Plant Molecular Biology

, Volume 58, Issue 1, pp 89–107 | Cite as

Expression of MADS-box genes during the embryonic phase in Arabidopsis

  • Melissa D. Lehti-Shiu
  • Benjamin J. Adamczyk
  • Donna E. FernandezEmail author


MADS domain factors play important roles as developmental regulators in plants. In Arabidopsis thaliana, MADS domain proteins have been shown to regulate various processes during the vegetative and reproductive phases. Relatively little is known, however, about family members expressed during the embryonic phase and their function. To determine which MADS-box genes are expressed during the embryonic phase in Arabidopsis, a family-wide survey involving gene-specific primers and RT-PCR was conducted. Transcripts corresponding to 64 (out of 109 total) family members could be detected in RNA samples isolated from embryonic culture tissue. Eight MADS-box genes that appear to be expressed at higher levels during the embryonic phase than in seedlings or in inflorescence apices were identified. The spatial pattern of expression in developing seeds was characterized for four MADS-box genes (FLOWERING LOCUS C, FLOWERING LOCUS M, AGAMOUS-LIKE 15, and AGAMOUS-LIKE 18) using reporter constructs encoding translational fusions to GUS. All four are expressed in cells throughout the endosperm and embryo. Finally, to test the hypothesis that AGAMOUS-LIKE15 (AGL15) and AGAMOUS-LIKE18 (AGL18) play essential roles during the embryonic phase, plants carrying T-DNA insertions that disrupt these genes were isolated. No embryo defects were observed in agl15 or agl18 single mutants or in agl15agl18 double mutants. These results indicate that multiple regulatory pathways that involve MADS domain factors are likely to operate in embryonic tissues, and that genetic and/or functional redundancy are likely to be as prevalent as in other phases of the life cycle.


AGL15 AGL18 embryo FLC gene family transcription factor 





bacterial artificial chromosome


hexadecyl trimethyl-ammonium bromide


differential interference contrast


embryonic culture tissue


translation elongation factor


germination medium




2-(N-morpholino)ethanesulfonic acid


reverse transcriptase polymerase chain reaction




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supp.pdf (119 kb)
Supplementary material


  1. Alonso, J.M., Stepanova, A., Leisse, T., Kim, C., Chen, H., Shinn, P., Stevenson, D., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D., Marchand, R., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W., Berry, C., Ecker, J. 2003Genome-wide insertional mutagenesis of Arabidopsis thalianaScience301653657Google Scholar
  2. Alvarez-Buylla , E.R., Pelaz, S., Liljegren , S.J., Gold , S.E., Burgeff, C., Ditta, G.S., Pouplana, L.R., Martinez-Castilla, L., Yanofsky , M.F. 2000aAn ancestral MADS-box gene duplication occured before the divergence of plants and animalsProc. Natl. Acad. Sci. USA9753285333Google Scholar
  3. Alvarez-Buylla , E.R., Liljegren , S.J., Pelaz, S., Gold , S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., Yanofsky , M.F. 2000bMADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomesPlant J24457466Google Scholar
  4. Amasino, R. 2004Vernalization, competence, and the epigenetic memory of winterPlant Cell1625532559Google Scholar
  5. Becker, A., Theißen, G. 2003The major clades of MADS-box genes and their role in the development and evolution of flowering plantsMol. Phylogenet. Evol29464489Google Scholar
  6. Borner, R., Kampmann, G., Chandler, J., Gleißner, R., Wisman, E., Apel, K., Melzer, S. 2000A MADS domain gene involved in the transition to flowering in ArabidopsisPlant J24591599Google Scholar
  7. Bowman, J.L., Smyth, D.R., Meyerowitz, E.M. 1991Genetic interactions among floral homeotic genes in ArabidopsisDevelopment112120Google Scholar
  8. Burgeff, C., Liljegren, S.J., Tapia-López, R., Yanofsky, M.F., Alvarez-Buylla, E.R. 2001MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana rootsPlanta214365372Google Scholar
  9. De Bodt, S., Raes, J., Peer, Y., Theißen, G. 2003And then there were many: MADS goes genomicTrends Plant Sci8475483Google Scholar
  10. Egea-Cortines, M., Saedler, H., Sommer, H. 1999Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majusEMBO J1853705379Google Scholar
  11. Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M., Colombo, L. 2003MADS-box protein complexes control carpel and ovule development in ArabidopsisPlant Cell1526032611Google Scholar
  12. Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., Fang, S.-C. 2000The embryo MADS domain factor AGL15 acts postembryonically: inhibition of perianth senescence and abscission via constitutive expressionPlant Cell12183197Google Scholar
  13. Ferrándiz, C., Liljegren, S.J., Yanofsky, M.F. 2000Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit developmentScience289436438Google Scholar
  14. Filipecki, M.K., Sommer, H., Malepszy, S. 1997The MADS-box CUS1 is expressed during cucumber somatic embryogenesisPlant Sci1256374Google Scholar
  15. Flanagan, C.A., Ma, H. 1994Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowersPlant Mol. Biol26581595Google Scholar
  16. Gu, Q., Ferrándiz, C., Yanofsky, M.F., Martienssen, R. 1998The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit developmentDevelopment12515091517Google Scholar
  17. Hajdukiewicz, P., Svab, Z., Maliga, P. 1994The small, versatile pPZP family of Agrobacterium binary vectors for plant transformationPlant Mol. Biol25989994Google Scholar
  18. Harding, E.W., Tang, W., Nichols, K.W., Fernandez, D.E., Perry, S.E. 2003Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15Plant Physiol133653663Google Scholar
  19. Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, I., Saedler, H., Huijser, P. 2000Molecular cloning of SVP: a negative regulator of the floral transition in ArabidopsisPlant J21351360Google Scholar
  20. Heck, G.R., Perry, S.E., Nichols, K.W., Fernandez, D.E. 1995AGL15, a MADS domain protein expressed in developing embryosPlant Cell712711282Google Scholar
  21. Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Münster, T., Theißen, G. 2002Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patensMol. Biol. Evol19801814Google Scholar
  22. Heuer, S., Hansen, S., Bantin, J., Brettschneider, R., Kranz, E., Lörz, H., Dresselhaus, T. 2001The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesisPlant Physiol1273345Google Scholar
  23. Honma, T., Goto, K. 2001Complexes of MADS-box proteins are sufficient to convert leaves into floral organsNature409525529Google Scholar
  24. Immink, R.G., Gadella, TWJ,Jr., Ferrario, S., Busscher, M., Angenent, G.C. 2002Analysis of MADS box protein–protein interactions in living plant cellsProc. Natl. Acad. Sci. USA9924162421Google Scholar
  25. Jack, T. 2001Plant development going MADSPlant Mol. Biol46515520Google Scholar
  26. Kinoshita, T., Harada, J.J., Goldberg, R.B., Fischer, R.L. 2001Polycomb repression of flowering during early plant developmentProc. Natl. Acad. Sci. USA981415614161Google Scholar
  27. Kofuji, R., Sumikawa, N., Yamasaki, M., Kondo, K., Ueda, K., Ito, M., Hasebe, M. 2003Evolution and divergence of the MADS-box gene family based on genome-wide expression analysesMol. Biol. Evol2019631977Google Scholar
  28. Krysan, P.J., Young, J.C., Sussman, M.R. 1999T-DNA as an insertional mutagen in ArabidopsisPlant Cell1122832290Google Scholar
  29. Köhler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., Grossniklaus, U. 2003The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1Genes Dev1715401553Google Scholar
  30. Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.-G., Lee, J.S., Kwon, Y.M., Lee, I. 2000The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in ArabidopsisGenes Dev1423662376Google Scholar
  31. Lehti-Shiu, M. (2003). Characterization of MADS domain genes expressed during embryogenesis in Arabidopsis thaliana. Ph.D. thesis. University of Wisconsin-MadisonGoogle Scholar
  32. Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L., Yanofsky, M.F. 2000SHATTERPROOF MADS-box genes control seed dispersal in ArabidopsisNature404766770Google Scholar
  33. Michaels, S.D., Ditta, G., Gustafson-Brown, C., Pelaz, S., Yanofsky, M., Amasino, R.M. 2003AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalizationPlant J33867874Google Scholar
  34. Michaels, S.D., Amasino, R.M. 1999Flowering Locus C encodes a novel MADS domain protein that acts as a repressor of floweringPlant Cell11949956Google Scholar
  35. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant15473497Google Scholar
  36. Murray, M.G., Thompson, W.F. 1980Rapid isolation of high molecular weight plant DNANucl. Acids Res843214325Google Scholar
  37. Nam, J., Kim, J., Lee, S., An, G., Ma, H., Nei, M. 2004Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiospermsProc. Natl. Acad. Sci. USA10119101915Google Scholar
  38. Nesi, N., Debeaujon, I., Jond, C., Stewart, A.J., Jenkins, G.I., Caboche, M., Lepiniec, L. 2002The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coatPlant Cell1424632479Google Scholar
  39. Parenicová, L., Folter Sd., , Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C., Colombo, L. 2003Molecular and phylognetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS worldPlant Cell1515381551Google Scholar
  40. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F. 2000B and C floral organ identity functions require SEPALLATA MADS-box genesNature405200203Google Scholar
  41. Perry, S.E., Nichols, K.W., Fernandez, D.E. 1996The MADS domain protein AGL15 localizes to the nucleus during early stages of seed developmentPlant Cell819771989Google Scholar
  42. Perry, S.E., Wang, H. 2003Rapid isolation of Arabidopsis thaliana developing embryosBiotechniques35278282Google Scholar
  43. Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E., Yanofsky, M.F. 2003Assessing the redundancy of MADS-box genes during carpel and ovule developmentNature4248588Google Scholar
  44. Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., Yanofsky, M.F. 1995Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene familyGenetics140345356Google Scholar
  45. Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L., Riechmann, J.L. 2001Regulation of flowering in Arabidopsis by an FLC homologuePlant Physiol126122132Google Scholar
  46. Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J., Riechmann, J.L. 2003Analysis of the Arabidopsis MADS AFFECTING FLOWERING Gene Family: MAF2 prevents vernalization by short periods of coldPlant Cell1511591169Google Scholar
  47. Riechmann, J.L., Krizek, B.A., Meyerowitz, E.M. 1996Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUSProc. Natl. Acad. Sci. USA9347934798Google Scholar
  48. Riechmann, J.L., Meyerowitz, E.M. 1997MADS domain proteins in plant developmentBiol. Chem37810791101Google Scholar
  49. Rounsley, S.D., Ditta, G.S., Yanofsky, M.F. 1995Diverse roles for MADS box genes in Arabidopsis developmentPlant Cell712591269Google Scholar
  50. Scortecci, K.C., Michaels, S.D., Amasino, R.M. 2001Identification of a MADS-box gene, FLOWERING LOCUS M, that represses floweringPlant J26229236Google Scholar
  51. Scortecci, K.C., Michaels, S.D., Amasino, R.M. 2003Genetic interactions between FLM and other flowering-time genes in Arabidopsis thalianaPlant Mol. Biol52915922Google Scholar
  52. Shore, P., Sharrocks, A.D. 1995The MADS-box family of transcription factorsEur. J. Biochem229113Google Scholar
  53. Sommer, H., Beltrán, J.-P, Huijser, P., Pape, H., Lönnig, W.-E, Saedler, H., Schwarz-Sommer, Z. 1990Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factorsEMBO J9605613Google Scholar
  54. Sung, S., Amasino, R.M. 2004Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3Nature427159164Google Scholar
  55. Theißen, G., Kim, J.T., Saedler, H. 1996Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotesJ. Mol. Evol43484516Google Scholar
  56. Wang, H., Caruso, L.V., Downie, A.B., Perry, S.E. 2004The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolismPlant Cell1612061219Google Scholar
  57. Zhang, H., Forde, B.G. 1998An Arabidopsis MADS box gene that controls nutrient-induced changes in root architectureScience279407409Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Melissa D. Lehti-Shiu
    • 1
  • Benjamin J. Adamczyk
    • 1
  • Donna E. Fernandez
    • 1
    Email author
  1. 1.Department of BotanyUniversity of Wisconsin-MadisonMadisonWI

Personalised recommendations