Advertisement

Plant Molecular Biology

, Volume 58, Issue 3, pp 333–349 | Cite as

Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility

  • Linda C. Enns
  • Masahiro M. Kanaoka
  • Keiko U. Torii
  • Luca Comai
  • Kiyotaka Okada
  • Robert E. Cleland
Article

Abstract

Callose, a β-1,3-glucan that is widespread in plants, is synthesized by callose synthase. Arabidopsis thaliana contains a family of 12 putative callose synthase genes (GSL1–12). The role of callose and of the individual genes in plant development is still largely uncertain. We have now used TILLING and T-DNA insertion mutants (gsl1-1, gsl5-2 and gsl5-3) to study the role of two closely related and linked genes, GSL1 and GSL5, in sporophytic development and in reproduction. Both genes are expressed in all parts of the plant. Sporophytic development was nearly normal in gsl1-1 homozygotes and only moderately defective in homozygotes for either of the two gsl5 alleles. On the other hand, plants that were gsl1-1/+ gsl5/gsl5 were severely defective, with smaller leaves, shorter roots and bolts and smaller flowers. Plants were fertile when the sporophytes had either two wild-type GSL1 alleles, or one GSL5 allele in a gsl1-1 background, but gsl1-1/+ gsl5/gsl5 plants produced an extremely reduced number of viable seeds. A chromosome with mutations in both GSL1 and GSL5 rendered pollen infertile, although such a chromosome could be transmitted via the egg. As a result, it was not possible to obtain plants that were homozygous for mutations in both the GSL genes. Pollen grain development was severely affected in double mutant plants. Many pollen grains were collapsed and inviable in the gsl1-1/gsl1-1 gsl5/+ and gsl1-1/+ gsl5/gsl5 plants. In addition, gsl1-1/+ gsl5/gsl5 plants produced abnormally large pollen with unusual pore structures, and had problems with tetrad dissociation. In this particular genotype, while the callose wall formed around the pollen mother cells, no callose wall separated the resulting tetrads. We conclude that GSL1 and GSL5 play important, but at least partially redundant roles in both sporophytic development and in the development of pollen. They are responsible for the formation of the callose wall that separates the microspores of the tetrad, and also play a gametophytic role later in pollen grain maturation. Other GSL genes may control callose formation at different steps during pollen development.

Keywords

Arabidopsis β-1,3-glucan callose GSL1 GSL5 pollen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M.P. 1969Differential staining of aborted and nonaborted pollenStain Tech.44117122Google Scholar
  2. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., Ecker, J.R. 2003Genome-wide insertional mutagenesis of Arabidopsis thalianaScience301653657Google Scholar
  3. Becker, J.D., Boavida, J.C., Carneiro, J., Haury, M., Feijó, J.A. 2003Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptomePlant Physiol.133713725Google Scholar
  4. Braselton, J.P., Wilkinson, M.J., Clulow, S.A. 1996Feulgen staining of intact plant tissues for confocal microscopyBiotech. Histochem.718487Google Scholar
  5. Cui, X., Shin, H., Song, C., Laosinchai, W., Amano, Y., Brown, R.M.,Jr. 2001A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibersPlanta213223230Google Scholar
  6. Doblin, M.S., Melis, L., Newbigin, E., Bacic, A., Read, S.M. 2001Pollen tubes of Nicotiana alata express two genes from different beta-glucan synthase familiesPlant Physiol.12520402052Google Scholar
  7. Donofrio, N.M., Delaney, T.P. 2001Abnormal callose response phenotype and hypersusceptibility to Peronospoara parasitica in defence-compromised arabidopsis nim11 and salicylate hydroxylase-expressing plantsMol. Plant Microbe Interact.14439450Google Scholar
  8. Douglas, C.M., Foor, F., Marrinan, J.A., Morin, N., Nielsen, J.B., Dahl, A.M., Mazur, P., Baginsky, W., Li, W., El-Sherbeini, M., Clemas, J.A., Mandala, S.M., Frommer, B.R., Kurtz, M.B. 1994The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthaseProc. Natl. Acad. Sci. USA911290712911Google Scholar
  9. Edlund, A., Swanson, R., Preuss, D. 2004Pollen and stigma structure and function: the role of diversity in pollinationPlant Cell Suppl.168497Google Scholar
  10. Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K., Bairoch, A. 2002The PROSITE database, its status in 2002Nucleic Acids Res.30235238Google Scholar
  11. Fei, H., Sawhney, V.K. 2001Ultrastructural characterization of male sterile 33 (ms33) mutant in Arabidopsis affected in pollen desiccation and maturationCan. J. Bot.79118129Google Scholar
  12. Ferguson, C., Teeri, T.T., Siika-aho, M., Read, S.M., Bacic, A. 1998Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacumPlanta206452460Google Scholar
  13. Heslop-Harrison, J 1964Cell walls, cell membranes, and protoplasmic connections during meiosis and pollen developmentLinskens, H.F. eds. Pollen Physiology and FertilizationNorth-Holland Publishing CompanyAmsterdam3947Google Scholar
  14. Heslop-Harrison, J., Mackenzie, A. 1967Autoradiography of soluble [2–14C]thymidine derivatives during meiosis and microsporogenesis in Lilium anthersJ. Cell. Sci.2387400Google Scholar
  15. Hong, Z., Delauney, A.J., Verma, D.P.S. 2001A cell plate-specific callose synthase and its interaction with phragmoplastinPlant Cell13755768Google Scholar
  16. Hülskamp, M., Parekh, N.S., Grini, P., Schneitz, K., Zimmerman, I., Lolle, S.J., Pruitt, R.E. 1997The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thalianaDev. Biol.187114124Google Scholar
  17. Jacobs, A.K., Lipka, V., Burton, R.A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., Fincher, G.B. 2003An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formationPlant Cell1525032513Google Scholar
  18. Li, J., Burton, R.A., Harvey, A.J., Hrmova, M., Wardak, A.Z., Stone, B.A., Fincher, G.B. 2003Biochemical evidence linking a putative callose synthase gene with (1→3)-beta-D-glucan biosynthesis in barleyPlant Mol. Biol.53213225Google Scholar
  19. Mayer, U., Jurgens, G. 2004Cytokinesis: lines of division taking shapeCurr. Opinion Plant Biol.7599604Google Scholar
  20. McCormick, S. 1993Male gametophyte developmentPlant Cell512651275Google Scholar
  21. Meikle Bonig, P.J. I., Hoogenraad, N.J., Clarke, A.E., Stone, B.A. 1991The location of (1→3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1→3)-β-glucan-specific monoclonal antibodyPlanta18518Google Scholar
  22. Nishimura, M.T., Stein, M., Hou, B.H., Vogel, J.P., Edwards, H., Somerville, S.C. 2003Loss of a callose synthase results in salicylic acid-dependent disease resistanceScience301969972Google Scholar
  23. Østergaard, L., Petersen, M., Mattsson, O., Mundy, J. 2002An Arabidopsis callose synthasePlant Mol Biol49 559566Google Scholar
  24. Østergaard, L., Yanofsky, M.F. 2004Establishing gene function by mutagenesis in Arabidopsis thalianaPlant J.39682696Google Scholar
  25. Otegui, M.S., Staehelin, A. 2004Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thalianaPlanta218501515Google Scholar
  26. Overall, R.L., Blackman, L.M. 1996A model of the macromolecular structure of plasmodesmataTrends Plant Sci.1307311Google Scholar
  27. Rae, A.L., Harris, P.J., Bacic, A., Clarke, A.E. 1985Composition of the cell walls of Nicotiana alata Link et Otto pollen tubesPlanta166128133Google Scholar
  28. Rinne, P.L.H., Kaikuranta, P.M., Schoot, C. 2001The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancyPlant J.26249264Google Scholar
  29. Rost, B. 1996aMethods in Enzymology266525539Google Scholar
  30. Rost, B., Fariselli, P., Casadio, R. 1996bProt Science717041718Google Scholar
  31. Schimoler-O’Rourke, R., Renault, S., Mo, W., Selitrennikoff, C.P. 2003Neurospora crassa FKS protein binds to the (1,3)beta-glucan synthase substrate, UDP-glucoseCurr. Microbiol.46408412Google Scholar
  32. Schlüpmann, H., Bacic, A., Read, S.M. 1994Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et OttoPlant Physiol.105659670Google Scholar
  33. Spielman, M., Preuss, D., Li, F.-L., Browne, W.E., Scott, R.J., Dickinson, H.G. 1997TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thalianaDevelopment12426452657Google Scholar
  34. Scott, R.J., Spielman, M., Dickinson, H.G. 2004Stamen structure and functionPlant Cell16S46S60Google Scholar
  35. Stone, B.A., Clarke, A.E. 1992Chemistry And Biology of (1,3)-β-GlucansLa Trobe Univ PressBundoora, VicGoogle Scholar
  36. Tanaka, H., Ishikawa, M., Kitamura, S., Takahashi, Y., Soyano, T., Machida, C., Machida, Y. 2004The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in ArabidopsisGenes Cells911991211Google Scholar
  37. Till, B.J., Reynolds, S.H., Greene, E.A., Codomo, C.A., Enns, L.C., Johnson, J.E., Burtner, C., Odden, A.R., Young, K., Taylor, N.E., Henikoff, J.G., Comai, L., Henikoff, S. 2003aLarge-scale discovery of induced point mutations with high-throughput TILLINGGenome Res.13524530Google Scholar
  38. Till, B.J., Colbert, T., Tompa, R., Enns, L., Codomo, C., Johnson, J., Reynolds, S.H., Henikoff, J.G., Greene, E.A., Steine, M.N., Comai, L. and Henikoff, S. 2003b. Highthroughput TILLING for functional genomics. In: E. Grotewald (Ed.), Humana Press, Totowa, NJ, pp. 205–220.Google Scholar
  39. Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F., Komeda, Y. 1996The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeatsPlant Cell8735746Google Scholar
  40. Turner, A., Wells, B., Roberts, K. 1994Plasmodesmata of maize root tips: structure and compositionJ. Cell. Sci.10733513361Google Scholar
  41. Verma, D.P.S. 2001Cytokinesis and building of the cell plate in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.52751784Google Scholar
  42. Verma, D.P., Hong, Z. 2001Plant callose synthase complexesPlant Mol. Biol.47693701Google Scholar
  43. Waterkeyn, L. 1962Les parois microsporocytaires de nature callosique chez Hellborus et TradescantiaCellule62225255Google Scholar
  44. Waterkeyn, L., Beinfait, A. 1970On a possible function of the callosic special wall in Ipomoea purpurea (L.) RothGrana101320Google Scholar
  45. Worall, D., Hird, D.L., Hodge, R., Paul, W., Draper, J., Scott, R. 1992Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobaccoPlant Cell4759771Google Scholar
  46. Yang, C.-Y., Spielman, M., Coles, J.P., Li, Y., Ghelani, S., Bourdon, V., Brown, R.C., Lemmon, B.E., Scott, R.J., Dickinson, H.G. 2003TETRASPORE encodes a kinesin required for male meiotic cytokinesis in ArabidopsisPlant J.34229240Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Linda C. Enns
    • 1
  • Masahiro M. Kanaoka
    • 2
  • Keiko U. Torii
    • 1
  • Luca Comai
    • 1
  • Kiyotaka Okada
    • 2
    • 3
  • Robert E. Cleland
    • 1
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Botany, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Core Research of Science and Technology (CREST) Research ProjectJapan

Personalised recommendations