Plant Molecular Biology

, Volume 60, Issue 3, pp 377–387 | Cite as

The Homeobox Gene GLABRA2 Affects Seed Oil Content in Arabidopsis

  • Bo Shen
  • Kerstin W. Sinkevicius
  • David A. Selinger
  • Mitchell C. Tarczynski


Despite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR). Using this method, we isolated ten low oil mutants and one high oil mutant. The high oil mutant, p777, accumulated 8% more oil in seed than did wild type, but it showed no differences in seed size, plant growth or development. The high-oil phenotype is caused by the disruption of the GLABRA2 gene, a previously identified gene that encodes a homeobox protein required for normal trichome and root hair development. Knockout of GLABRA2 did not affect LEAFY COTYLEDON 1 and PICKLE expression in developing embryo. The result indicates that in addition to its known function in trichome and root hair development, GLABRA2 is involved in the control of seed oil accumulation.

Key words

density screen GLABRAhigh oil mucilage trichome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D.E. 1988. Breeding special nutritional and industrial types. In: G.F. Sprague and J.W. Dudley (Eds.), Corn and Corn Improvement, American Society of Agronomy, pp. 869–880.Google Scholar
  2. Bao, X., Ohlrogge, J. 1999Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryosPlant Physiol.12010571062CrossRefPubMedGoogle Scholar
  3. Brenner, S.,  et al. 2000Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arraysNat. Biotechnol.18630634CrossRefPubMedGoogle Scholar
  4. Cernac, A., Benning, C. 2004WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in ArabidopsisPlant J.40575585CrossRefPubMedGoogle Scholar
  5. Dean Rider, S.,Jr., Henderson, J.T., Jerome, R.E., Edenberg, H.J., Romero-Severson, J., Ogas, J. 2003Coordinate repression of regulators of embryonic identity by PICKLE during germination in ArabidopsisPlant J.353343CrossRefPubMedGoogle Scholar
  6. Focks, N., Benning, C. 1998wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolismPlant Physiol.11891101CrossRefPubMedGoogle Scholar
  7. Huang, A.H.C. 1992Oil bodies and oleosins in seedsAnnu. Rev. Plant Physiol. Plant Mol. Biol.43177200CrossRefGoogle Scholar
  8. Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S., Taylor, D.C. 2001Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weightPlant Physiol.126861874CrossRefPubMedGoogle Scholar
  9. Johnson, C.S., Kolevski, B., Smyth, D.R. 2002TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factorPlant Cell1413591375CrossRefPubMedGoogle Scholar
  10. Lin, Y., Sun, L., Nguyen, L.V., Rachubinski, R.A., Goodman, H.M. 1999The Pex16p homolog SSE1 and storage organelle formation in Arabidopsis seedsScience284328330CrossRefPubMedGoogle Scholar
  11. Lotan, T., Ohto, M., Yee, K.M., West, M.A., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., Harada, J.J. 1998Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cellsCell9311951205CrossRefPubMedGoogle Scholar
  12. Meinke, D.W., Franzmann, L.H., Nickle, T.C., Yeung, E.C. 1994Leafy Cotyledon Mutants of ArabidopsisPlant Cell610491064CrossRefPubMedGoogle Scholar
  13. Nairn, C.J., Ferl, R.J. 1988The complete nucleotide sequence of the small-subunit ribosomal RNA coding region for the cycad Zamia pumila: phylogenetic implicationsJ Mol. Evol.27133141CrossRefPubMedGoogle Scholar
  14. Ohashi, Y., Oka, A., Rodrigues-Pousada, R., Possenti, M., Ruberti, I., Morelli, G., Aoyama, T. 2003Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formationScience30014271430CrossRefPubMedGoogle Scholar
  15. Ohlrogge, J., Browse, J. 1995Lipid biosynthesisPlant Cell7957970CrossRefPubMedGoogle Scholar
  16. Ohlrogge, J., Jaworski, J.G. 1997Regulation of fatty acid synthesisAnnu. Rev. Plant Physiol. Plant Mol. Biol.48109136CrossRefPubMedGoogle Scholar
  17. Ogas, J., Kaufmann, S., Henderson, J., Somerville, C. 1999PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in ArabidopsisProc. Natl. Acad. Sci. USA961383913844CrossRefPubMedGoogle Scholar
  18. Pesch, M., Hulskamp, M. 2004Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiationCurr. Opin. Genet. Dev.14422427CrossRefPubMedGoogle Scholar
  19. Ramli, U.S., Baker, D.S., Quant, P.A., Harwood, J.L. 2002Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assemblyBiochem. J.364393401PubMedGoogle Scholar
  20. Rerie, W.G., Feldmann, K.A., Marks, M.D. 1994The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in ArabidopsisGenes Dev.813881399PubMedGoogle Scholar
  21. Roesler, K., Shintani, D., Savage, L., Boddupalli, S., Ohlrogge, J. 1997Targeting of the Arabidopsis homomeric acetyl-Coenzyme A carboxylase to plastids of rapeseedsPlant Physiol.1137581CrossRefPubMedGoogle Scholar
  22. Sammbrook, J., Fritsch, E.F., Maniatis, T. 1989 Molecular Cloning: A laboratory Manual2Cold Spring Harbor Laboratory PressCold Spring Harbor NYGoogle Scholar
  23. Schultz, D.J., Craig, R., Cox-Foster, D.L., Mumma, R., Medford, J.I. 1994RNA isolation from recalcitrant plant tissuePlant Mol. Biol. Reporter.12310316Google Scholar
  24. Szymanski, D.B., Lloyd, A.M., Marks, M.D. 2000Progress in the molecular genetic analysis of trichome initiation and morphogenesis in ArabidopsisTrends Plant Sci.5214219CrossRefPubMedGoogle Scholar
  25. Voelker Kinney, T.A.J. 2001Variations in the biosynthesis of seed-storage lipidsAnnu. Rev. Plant. Physiol. Plant Mol. Biol.52335361Google Scholar
  26. Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., Chory, J. 2000Activation tagging in ArabidopsisPlant Physiol.12210031013CrossRefPubMedGoogle Scholar
  27. Western, T.L., Burn, J., Tan, W.L., Skinner, D.J., Martin-McCaffrey, L., Moffatt, B.A., Haughn, G.W. 2001Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in ArabidopsisPlant Physiol.1279981011CrossRefPubMedGoogle Scholar
  28. Western, T.L., Young, D.S., Dean, G.H., Tan, W.L., Samuels, A.L., Haughn, G.W. 2004MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coatPlant Physiol.134296306CrossRefPubMedGoogle Scholar
  29. Zou, J., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A., Hu, X., Taylor, D.C. 1997Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase genePlant Cell9909923CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Bo Shen
    • 1
  • Kerstin W. Sinkevicius
    • 1
  • David A. Selinger
    • 1
  • Mitchell C. Tarczynski
    • 1
  1. 1.Pioneer Hi-Bred Internationala DuPont CompanyJohnstonUSA

Personalised recommendations