Advertisement

Plant Molecular Biology

, Volume 57, Issue 6, pp 889–906 | Cite as

Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii

  • Ken-ichi Kucho
  • Kazuhisa Okamoto
  • Satoshi Tabata
  • Hideya Fukuzawa
  • Masahiro IshiuraEmail author
Article

Abstract

Circadian rhythms are self-sustaining oscillations whose period length under constant conditions is about 24 h. Circadian rhythms are widespread and involve functions as diverse as human sleep-wake cycles and cyanobacterial nitrogen fixation. In spite of a long research history, knowledge about clock-controlled genes is limited in Chlamydomonas reinhardtii. Using a cDNA macroarray containing 10 368 nuclear-encoded genes, we examined global circadian regulation of transcription in Chlamydomonas. We identified 269 candidates for circadianly expressed gene. Northern blot analysis confirmed reproducible and sustainable rhythmicity for 12 genes. Most genes exhibited peak expression at the transition point between day and night. One hundred and eighteen genes were assigned predicted annotations. The functions of the cycling genes were diverse and included photosynthesis, respiration, cellular structure, and various metabolic pathways. Surprisingly, 18 genes encoding chloroplast ribosomal proteins showed a coordinated circadian pattern of expression and peaked just at the beginning of subjective day. The co-regulation of genes bearing a similar function was also observed in genes involved in cellular structure. They peaked at the end of the subjective night, which is when the regeneration of cell walls and flagella in daughter cells occurs. Expression of the chlamyopsin gene, which encodes an opsin-type photoreceptor, also exhibited circadian rhythm.

Keywords

cDNA macroarray Chlamydomonas circadian rhythm ribosomal protein 

Abbreviations

CCTR

circadian-controlled translational regulator

CT

circadian time

ER

endoplasmic reticulum

EST

expressed sequence tag

LD

12 h light/12 h dark

LHC

light-harvesting chlorophyll a/b-binding

LL

constant light conditions

PAGE

polyacrylamide gel electrophoresis

RP

ribosomal protein

SDS

sodium dodecylsulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, W.S., Apt, K.E. 1990Cell wall regeneration in Chlamydomonas: accumulation of mRNAs encoding cell wall hydroxyproline-rich glycoproteinsProc. Natl. Acad. Sci. USA8773557359PubMedGoogle Scholar
  2. Akhtar, R.A., Reddy, A.B., Maywood, E.S., Clayton, J.D., King, V.M., Smith, A.G., Gant, T.W., Hastings, M.H., Kyriacou, C.P. 2002Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleusCurr. Biol.12540550CrossRefPubMedGoogle Scholar
  3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucl. Acids Res.2533893402CrossRefPubMedGoogle Scholar
  4. Aoki, S., Kato, S., Ichikawa, K., Shimizu, M. 2004Circadian expression of the PpLhcb2 gene encoding a major light-harvesting chlorophyll a/b-binding protein in the moss Physcomitrella patensPlant Cell Physiol.456876CrossRefPubMedGoogle Scholar
  5. Asamizu, E., Nakamura, Y., Sato, S., Fukuzawa, H., Tabata, S. 1999A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tagsDNA Res.6369373PubMedGoogle Scholar
  6. Asamizu, E., Miura, K., Kucho, K., Inoue, Y., Fukuzawa, H., Ohyama, K, Nakamura, Y., Tabata, S. 2000Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtiiDNA Res.7305307PubMedGoogle Scholar
  7. Bloodgood, R.A., Workman, L.J. 1984A flagellar surface glycoprotein mediating cell-substrate interaction in ChlamydomonasCell Motil.47787PubMedGoogle Scholar
  8. Bognar, L.K., Hall, A., Adam, E., Thain, S.C., Nagy, F., Millar, A.J. 1999The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome BProc. Natl. Acad. Sci. USA961465214657PubMedGoogle Scholar
  9. Bruce, V.G. 1970The biological clock in Chlamydomonas reinhardtiiJ. Protozool.17328334Google Scholar
  10. Bruce, V.G. 1972Mutants of the biological clock in Chlamydomonas reinhardtiiGenetics70537548PubMedGoogle Scholar
  11. Byrne, T.E., Wells, M.R., Johnson, C.H. 1992Circadian rhythms of chemotaxis to ammonium and methylammonium uptake in ChlamydomonasPlant Physiol.98879886Google Scholar
  12. Ceriani, M.F., Hogenesch, J.B., Yanovsky, M., Panda, S., Straume, M., Kay, S.A. 2002Genome-wide expression analysis in Drosophila reveals genes controlling circadian behaviorJ. Neurosci.2293059319PubMedGoogle Scholar
  13. Chomczynski, P., Sacchi, N. 1987Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extractionAnal. Biochem.162156159PubMedGoogle Scholar
  14. Correa, A., Lewis, Z.A., Greene, A.V., March, I.J., Gomer, R.H., Bell-Pedersen, D. 2003Multiple oscillators regulate circadian gene expression in NeurosporaProc. Natl. Acad. Sci. USA1001359713602PubMedGoogle Scholar
  15. Deininger, W., Kroger, P., Hegemann, U., Lottspeich, F., Hegemann, P. 1995Chlamyrhodopsin represents a new type of sensory photoreceptorEMBO J.1458495858PubMedGoogle Scholar
  16. Dron, M., Rahire, M., Rochaix, J.D. 1982Sequence of the chloroplast DNA region of Chlamydomonas reinhardtii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genesJ. Mol. Biol.162775793PubMedGoogle Scholar
  17. Duffield, G.E., Best, J.D., Meurers, B.H., Bittner, A., Loros, J.J., Dunlap, J.C. 2002Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cellsCurr. Biol.12551557PubMedGoogle Scholar
  18. Dunlap, J.C. 1999Molecular bases for circadian clocksCell96271290CrossRefPubMedGoogle Scholar
  19. Emery, P., So, W.V., Kaneko, M., Hall, J.C., Rosbash, M. 1998CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivityCell95669679PubMedGoogle Scholar
  20. Fujiwara, S., Fukuzawa, H., Tachiki, A., Miyachi, S. 1990Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtiiProc. Natl. Acad. Sci. USA8797799783PubMedGoogle Scholar
  21. Fujiwara, S., lshida, N., Tsuzuki, M. 1996Circadian expression of the carbonic anhydrase gene, Cah1, in Chlamydomonas reinhardtiiPlant Mol. Biol.32745749PubMedGoogle Scholar
  22. Goto, K., Johnson, C.H. 1995Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtiiJ. Cell Biol.12910611069PubMedGoogle Scholar
  23. Grundschober, C., Delaunay, F., Puhlhofer, A., Triqueneaux, G., Laudet, V., Bartfai, T., Nef, P. 2001Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblastsJ. Biol. Chem.2764675146758PubMedGoogle Scholar
  24. Hall, A., Kozma-Bognar, L., Toth, R., Nagy, F., Millar, A.J. 2001Conditional circadian regulation of PHYTOCHROME A gene expressionPlant Physiol.12718081818PubMedGoogle Scholar
  25. Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.-S., Han, B., Zhu, T., Wang, X., Kreps, J.A., Kay, S.A. 2000Orchestrated transcription of key pathways in Arabidopsis by the circadian clockScience29021102113PubMedGoogle Scholar
  26. Harris, E.H. 1989The Chlamydomonas SourcebookAcademic PressSan Diego65113Google Scholar
  27. Hwang, S., Herrin, D.L. 1994Control of Ihc gene transcription by the circadian clock in Chlamydomonas reinhardtiiPlant Mol. Biol.26557569PubMedGoogle Scholar
  28. Hwang, S., Kawazoe, R., Herrin, D.L. 1996Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in ChlamydomonasProc. Natl. Acad. Sci. USA939961000PubMedGoogle Scholar
  29. Jacobshagen, S., Johnson, C.H. 1994Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundances of cab II, and possibly of b-tubulin and cytochrome cEur. J. Cell Biol.64142152PubMedGoogle Scholar
  30. Jacobshagen, S., Kindle, K.L., Johnson, C.H. 1996Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtiiPlant Mol. Biol.3111731184PubMedGoogle Scholar
  31. Jacobshagen, S., Whetstine, J.R., Boling, J.M. 2001Many but not all genes in Chlamydomonas reinhardtii are regulated by the circadian clockPlant Biol.3592597Google Scholar
  32. King, S.M., Patel-King, R.S. 1995The Mr = 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologuesJ. Biol. Chem.2701144511452PubMedGoogle Scholar
  33. Kolar, C., Adam, E., Schafer, E., Nagy, F. 1995Expression of tobacco genes for light-harvesting chlorophyll a/b binding proteins of photosystem II is controlled by two circadian oscillators in a developmentally regulated fashionProc. Natl. Acad. Sci. USA9221742178PubMedGoogle Scholar
  34. Kucho, K., Okamoto, K., Tsuchiya, Y., Nomura, S., Nango, M., Kanehisa, M. and Ishiura, M. 2005. Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacterial., in pressGoogle Scholar
  35. Laemmli, U.K. 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685PubMedGoogle Scholar
  36. Lee, J., Herrin, D.L. 2002Assessing the relative importance of light and the circadian clock in controlling chloroplast translation in Chlamydomonas reinhardtiiPhotosynth. Res.72295306Google Scholar
  37. Lemaire, S.D., Stein, M., Issakidis-Bourguet, E., Keryer, E., Benoit, V.V., Pineau, B., Gerard-Hirne, C., Miginiac-Maslow, M., Jacquot, J.P. 1999The complex regulation of ferredoxin/thioredoxin-related genes by light and the circadian clockPlanta209221229PubMedGoogle Scholar
  38. Lin, Y., Han, M., Shimada, B., Wang, L., Gibler, T.M., Amarakone, A., Awad, T.A., Stormo, G.D., Gelder, R.N., Taghert, P.H. 2002Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogasterProc. Natl. Acad. Sci. USA9995629567PubMedGoogle Scholar
  39. McDonald, M.J., Rosbash, M. 2001Microarray analysis and organization of circadian gene expression in DrosophilaCell107567578PubMedGoogle Scholar
  40. Memon, A.R., Hwang, S., Deshpande, N., Thompson, GA.,Jr., Herrin, D.L 1995Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1Plant Mol. Biol.29567577PubMedGoogle Scholar
  41. Miller, A.J., Short, S.R., Chua, N.-H., Kay, S.A. 1992A novel circadian phenotype based on firefly luciferase expression in transgenic plantsPlant Cell410751087PubMedGoogle Scholar
  42. Mittag, M., Lee, D.H., Hastings, J.W. 1994Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3′ untranslated region of its mRNAProc. Natl. Acad. Sci. USA9152575261PubMedGoogle Scholar
  43. Mittag, M. 1996Conserved circadian elements in phylogenetically diverse algaeProc. Natl. Acad. Sci. USA931440114404PubMedGoogle Scholar
  44. Mittag, M., Wagner, V. 2003The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtiiBiol. Chem.384689695PubMedGoogle Scholar
  45. Miura, K, Yamano, T., Yoshioka, S., Kohinata, T., Inoue, Y., Taniguchi, F., Asamizu, E., Nakamura, Y., Tabata, S., Yamato, K.T., Ohyama, K., Fukuzawa, H. 2004Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtiiPlant Physiol.13515951607PubMedGoogle Scholar
  46. Monod, C., Takahashi, Y., Goldschmidt-Clermont, M., Rochaix, J.D. 1994The chloroplast ycf8 open reading frame encodes a photosystem II polypeptide which maintains photosynthetic activity under adverse growth conditionsEMBO J.1327472754PubMedGoogle Scholar
  47. Nelson, W., Tong, Y.L., Lee, J.K., Halberg, F. 1979Methods for cosinor-rhythmometryChronobiologia6305323PubMedGoogle Scholar
  48. Nikaido, S.S., Johnson, C.H. 2000Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtiiPhotochem. Photobiol.71758765PubMedGoogle Scholar
  49. Nowrousian, M., Duffield, G.E., Loros, J.J., Dunlap, J.C. 2003The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassaGenetics164923933PubMedGoogle Scholar
  50. Okamoto, K., Onai, K. and Ishiura, M. 2005. RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal. Biochem., in pressGoogle Scholar
  51. Okamoto, O.K., Hastings, J.W. 2003Novel dinoflagellate clock-related genes identified through microarray analysisJ. Phycol.39519526Google Scholar
  52. Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M., Schultz, P.G., Kay, S.A., Takahashi, J.S., Hogenesch, J.B. 2002Coordinated transcription of key pathways in the mouse by the circadian clockCell109307320PubMedGoogle Scholar
  53. Randolph-Anderson, B.L., Gillham, N.W., Boynton, J.E. 1989Electrophoretic and immunological comparisons of chloroplast and prokaryotic ribosomal proteins reveal that certain families of large subunit proteins are evolutionarily conservedJ. Mol. Evol.296888PubMedGoogle Scholar
  54. Sambrook, J., Russell, D.W. 2001Molecular Cloning3rd ednCold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  55. Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., Wisman, E. 2001Microarray analysis of diurnal and circadian-regulated genes in ArabidopsisPlant Cell13113123PubMedGoogle Scholar
  56. Schägger, H., Jagow, G. 1987Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDaAnal. Biochem.166368379CrossRefPubMedGoogle Scholar
  57. Schmidt, R.J., Richardson, C.B., Gillham, N.W., Boynton, J.E. 1983Sites of synthesis of chloroplast ribosomal proteins in ChlamydomonasJ. Cell Biol.9614511463PubMedGoogle Scholar
  58. Schmidt, R.J., Myers, A.M., Gillham, N.W., Boynton, J.E. 1984Immunological similarities between specific chloroplast ribosomal proteins from Chlamydomonas reinhardtii and ribosomal proteins from Escherichia coliMol. Biol. Evol.1317334PubMedGoogle Scholar
  59. Semenza, J.C., Hardwick, K.G., Dean, N., Pelham, H.R. 1990ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathwayCell6113491357PubMedGoogle Scholar
  60. Storch, K.-F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., Weitz, C.J. 2002Extensive and divergent circadian gene expression in liver and heartNature4177883PubMedGoogle Scholar
  61. Straley, S.C., Bruce, V.G. 1979Stickiness to glassPlant Physiol.6311751181Google Scholar
  62. Sueoka, N. 1960Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtiiProc. Natl. Acad. Sci. USA468391Google Scholar
  63. Sugiyama, N., Izawa, T., Oikawa, T., Shimamoto, K. 2001Light regulation of circadian clock-controlled gene expression in ricePlant J.26607615PubMedGoogle Scholar
  64. Takahashi, Y., Goldschmidt-Clermont, M., Soen, S.Y., Franzen, L.G., Rochaix, J.D. 1991Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem IEMBO J.1020332040PubMedGoogle Scholar
  65. Teramoto, H., Ono, T., Minagawa, J. 2001Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtiiPlant Cell Physiol.42849856PubMedGoogle Scholar
  66. Toth, R., Kevei, E., Hall, A., Millar, A.J., Nagy, F., Kozma-Bognar, L. 2001Circadian clock-regulated expression of phytochrome and cryptochrome genes in ArabidopsisPlant Physiol.12716071616PubMedGoogle Scholar
  67. Ueda, H.R., Chen, W., Adachi, A., Wakamatsu, H., Hayashi, S., Takasugi, T., Nagano, M., Nakahama, K., Suzuki, Y., Sugano, S., lino, M., Shigeyoshi, Y., Hashimoto, S. 2002aA transcription factor response element for gene expression during circadian nightNature418534539Google Scholar
  68. Ueda, H.R., Matsumoto, A., Kawamura, M., lino, M., Tanimura, T., Hashimoto, S. 2002bGenome-wide transcriptional orchestration of circadian rhythms in DrosophilaJ. Biol. Chem.2771404814052Google Scholar
  69. Wagner, V., Fiedler, M., Markert, C., Hippler, M., Mittag, M. 2004Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtiiFEBS Lett.559129135PubMedGoogle Scholar
  70. Waltenberger, H., Schneid, C., Grosch, J.O., Bareiss, A., Mittag, M. 2001Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtiiMol. Genet. Genom.265180188Google Scholar
  71. Werner, R. 2002Chlamydomonas reinhardtii as a unicellular model for circadian rhythm analysisChronobiol. Int.19325343PubMedGoogle Scholar
  72. Yamaguchi, K., Prieto, S., Beligni, M.V., Haynes, P.A., McDonald, W.H., Yates, J.R.,3rd, Mayfield, S.P. 2002Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5Plant Cell1429572974PubMedGoogle Scholar
  73. Yamaguchi, K., Beligni, M.V., Prieto, S., Haynes, PA., McDonald, W.H., Yates, J.R.,3rd, Mayfield, S.P. 2003Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70 S ribosomeJ. Biol. Chem.2783377433785PubMedGoogle Scholar
  74. Yoshioka, S., Taniguchi, F., Miura, K., Inoue, T., Yamano, T., Fukuzawa, H. 2004The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtiiPlant Cell1614661477PubMedGoogle Scholar
  75. Zhao, B., Schneid, C., lliev, D., Schmidt, E.M., Wagner, V., Wollnik, F., Mittag, M. 2004The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunitsEukaryot. Cell3815825PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ken-ichi Kucho
    • 1
  • Kazuhisa Okamoto
    • 1
    • 2
  • Satoshi Tabata
    • 3
  • Hideya Fukuzawa
    • 4
  • Masahiro Ishiura
    • 1
    • 5
    • 6
    Email author
  1. 1.Center for Gene Research, Nagoya UniversityNagoyaJapan
  2. 2.Aichi Science and Technology FoundationNagoyaJapan
  3. 3.Kazusa DNA Research InstituteKisarazuJapan
  4. 4.Division of Integrated Life Science, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
  5. 5.Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
  6. 6.Bio-oriented Technology Research Advancement Institution (BRAIN)Nagoya UniversityNagoyaJapan

Personalised recommendations