Plant Molecular Biology

, Volume 59, Issue 6, pp 927–944 | Cite as

Identification of NPR1-Dependent and Independent Genes Early Induced by Salicylic Acid Treatment in Arabidopsis

  • Francisca Blanco
  • Virginia Garretón
  • Nicolas Frey
  • Calixto Dominguez
  • Tomás Pérez-Acle
  • Dominique Van der  Straeten
  • Xavier Jordana
  • Loreto HoluigueEmail author


Salicylic acid (SA) plays a crucial role in stress resistance in plants by modifying the expression of a battery of genes. In this paper, we report the identification of a group of early SA-regulated genes of Arabidopsis (activated between 0.5–2.5 h), using the cDNA-amplified fragment length polymorphism technique (cDNA-AFLP). Using 128 different primer combinations, we identified several genes based on their differential expression during SA treatment. Among these, we identified 12 genes up-regulated by SA whose patterns of induction were confirmed by Northern analysis. The identified genes can be grouped into two functional groups: Group 1: genes involved in cell protection (i.e. glycosyltransferases, glutathion S-transferases), and Group 2: genes involved in signal transduction (protein kinases and transcription factors). We also evaluated NPR1 requirement for the induction of the 12 up-regulated genes, and found that only those belonging to Group 2 require this co-activator for their expression. In silico analysis of the promoter sequences of the up-regulated genes, allowed us to identify putative cis-elements over-represented in these genes. Interestingly, as-1-like elements, previously characterized as SA-responsive elements, were specifically over-represented in Group 1 genes. The identification of early SA-regulated genes is an important step towards understanding the complex role of this hormone in plant stress resistance.


as-1 cDNA-AFLP cell protection to stress early activated genes NPR1 salicylic acid 



amplified fragment length polymorphism-based transcript profiling


activation sequence-1


glutathione S-transferase




hypersensitive response


immediate early glycosyltransferase gene


jasmonic acid


nonexpressor of PR genes 1


pathogenesis-related proteins


reactive oxygen species


salicylic acid


systemic acquired resistance


transcript derived fragments


family of bZip transcription factors recognizing TGACG motif


wild type


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., Lamb, C. 1998Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunityCell92773784CrossRefPubMedGoogle Scholar
  2. Bachem, C.W.B., Hoeven, R.S., Bruijn, S.M., Vreugdenhil, D., Zabeau, M., Visser, R.G.F. 1996Visualization of differential gene expression using a novel method of RNA fingerprint based on AFLP: Analysis of gene expression during potato tuber developmentPlant J.9745753CrossRefPubMedGoogle Scholar
  3. Benfey, P.N., Ren, L., Chua, N.H. 1990Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant developmentEmbo. J.916771684PubMedGoogle Scholar
  4. Borsani, O., Valpuesta, V., Botella, M.A. 2001Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlingsPlant Physiol.12610241030CrossRefPubMedGoogle Scholar
  5. Breyne, P., Dreesen, R., Vandepoele, K., Veylder, L., Breusegem, F., Callewaert, L., Rombauts, S., Raes, J., Cannoot, B., Engler, G., Inze, D., Zabeau, M. 2002Transcriptome analysis during cell division in plantsPNAS991482514830CrossRefPubMedGoogle Scholar
  6. Callis, J., Vierstra, R.D. 2000Protein degradation in signalingCurr. Opin. Plant Biol.3381386CrossRefPubMedGoogle Scholar
  7. Cao, H., Bowling, S.A., Gordon, A.S., Dong, X. 1994Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistancePlant Cell615831592CrossRefPubMedGoogle Scholar
  8. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X. 1997The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeatsCell885763CrossRefPubMedGoogle Scholar
  9. Chen, W., Chao, G., Singh, K.B. 1996The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1- binding sitesPlant␣J.10955966PubMedGoogle Scholar
  10. Chen, W., Singh, K.B. 1999The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs elementPlant J.19667677CrossRefPubMedGoogle Scholar
  11. Leon, I.P., Sanz, A., Hamberg, M., Castresana, C. 2002Involvement of the Arabidopsis alpha-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell deathPlant J.296172PubMedGoogle Scholar
  12. Paepe, A., Vuylsteke, M., Hummelen, P., Zabeau, M., Straeten, D. 2004Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in ArabidopsisPlant J.39537559PubMedGoogle Scholar
  13. Delaney, T.P., Friedrich, L., Ryals, J.A. 1995Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistanceProc. Natl. Acad. Sci. USA9266026606PubMedGoogle Scholar
  14. Delessert, C., Wilson, I., Straeten, D., Dennis, E., Dolferus, R. 2004Spatial and temporal analysis of the local response to wounding in Arabidopsis leavesPlant Mol. Biol.55165181CrossRefPubMedGoogle Scholar
  15. Despres, C., DeLong, C., Glaze, S., Liu, E., Fobert, P.R. 2000The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factorsPlant Cell12279290CrossRefPubMedGoogle Scholar
  16. Dong, X. 2004NPR1, all things consideredCurr. Opin. Plant. Biol.7547552CrossRefPubMedGoogle Scholar
  17. Draper, J. 1997Salicylate, superoxide synthesis and cell suicide in plant defenceTrends Plant Sci.2162165CrossRefGoogle Scholar
  18. Droog, F., Spek, A., Kooy, A., Ruyter, A., Hoge, H., Libbenga, K., Hooykaas, P., Zaal, B. 1995Promoter analysis of the auxin-regulated tobacco glutathione S-transferase genes Nt103-1 and Nt103-35Plant Mol. Biol.29413429CrossRefPubMedGoogle Scholar
  19. Durrant, W.E., Dong, X. 2004Systemic acquired resistanceAnnu. Rev. Phytopathol.42185209CrossRefPubMedGoogle Scholar
  20. Edwards, R., Dixon, D.P., Walbot, V. 2000Plant glutathione S-transferases: enzymes with multiple functions in sickness and in healthTrends Plant Sci.5193198CrossRefPubMedGoogle Scholar
  21. Fan, W., Dong, X. 2002In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in ArabidopsisPlant Cell1413771389CrossRefPubMedGoogle Scholar
  22. Feys, B.J., Moisan, L.J., Newman, M.A., Parker, J.E. 2001Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4Embo J.2054005411CrossRefPubMedGoogle Scholar
  23. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., Ryals, J. 1993Requierement of salicylic acid for the induction of systemic acquired resistanceScience250754756Google Scholar
  24. Garreton, V., Carpinelli, J., Jordana, X., Holuigue, L. 2002The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative speciesPlant Physiol.13015161526CrossRefPubMedGoogle Scholar
  25. Glazebrook, J., Rogers, E.E., Ausubel, F.M. 1996Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screeningGenetics143973982PubMedGoogle Scholar
  26. He, Y., Fukushige, H., Hildebrand, D.F., Gan, S. 2002Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescencePlant Physiol.128876884CrossRefPubMedGoogle Scholar
  27. He, Y., Gan, S. 2001Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in ArabidopsisPlant Mol Biol.47595605CrossRefPubMedGoogle Scholar
  28. He, Z.-H., He, D., Kohorn, B.D. 1998Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen responsePlant J.145563CrossRefPubMedGoogle Scholar
  29. Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T. 1999Plant cis-acting regulatory DNA elements (PLACE) database: 1999Nucleic Acids Res.27297300CrossRefPubMedGoogle Scholar
  30. Horvath, D.M., Chua, N.H. 1996Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compoundsPlant Mol. Biol.3110611072CrossRefPubMedGoogle Scholar
  31. Horvath, D.M., Huang, D.J., Chua, N.H. 1998Four classes of salicylate-induced tobacco genesMol. Plant Microbe Interact.11895905PubMedGoogle Scholar
  32. Johnson, C., Boden, E., Arias, J. 2003Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in ArabidopsisPlant Cell1518461858CrossRefPubMedGoogle Scholar
  33. Johnson, C., Boden, E., Desai, M., Pascuzzi, P., Arias, J. 2001In vivo target promoter-binding activities of a xenobiotic stress-activated TGA factorPlant J.28237243CrossRefPubMedGoogle Scholar
  34. Kinkema, M., Fan, W., Dong, X. 2000Nuclear localization of NPR1 is required for activation of PR gene expressionPlant Cell1223392350CrossRefPubMedGoogle Scholar
  35. Krawczyk, S., Thurow, C., Niggeweg, R., Gatz, C. 2002Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potentialNucleic Acids Res.30775781CrossRefPubMedGoogle Scholar
  36. Lam, E., Benfey, P.N., Gilmartin, P.M., Fang, R.X., Chua, N.H. 1989Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plantsProc. Natl. Acad. Sci. USA8678907894PubMedGoogle Scholar
  37. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., Ward, E. 1998Functional analysis of regulatory sequences controlling PR-1 gene expression in ArabidopsisPlant J.16223233CrossRefPubMedGoogle Scholar
  38. Li, Y., Baldauf, S., Lim, E.K., Bowles, D.J. 2001Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thalianaJ. Biol. Chem.27643384343PubMedGoogle Scholar
  39. Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J., Bowles, D.J. 2002The activity of␣Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoatesJ. Biol. Chem.277586592PubMedGoogle Scholar
  40. Liu, X., Lam, E. 1994Two binding sited for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobaccoJ. Biol. Chem.269668675PubMedGoogle Scholar
  41. Mahalingam, R., Gomez-Buitrago, A., Eckardt, N., Shah, N., Guevara-Garcia, A., Day, P., Raina, R., Fedoroff, N. 2003Characterizing the stress/defense transcriptome of ArabidopsisGenome Biol.4R20.1–R20.13CrossRefGoogle Scholar
  42. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., Dietrich, R.A. 2000The transcriptome of Arabidopsis thaliana during systemic acquired resistanceNat. Genet.26403410PubMedGoogle Scholar
  43. Marrs, K.A. 1996The functions and regulation of glutathione S-transferases in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.47127158CrossRefPubMedGoogle Scholar
  44. Matsumura, H., Reich, S., Ito, A., Saitoh, H., Kamoun, S., Winter, P., Kahl, G., Reuter, M., Kruger, D.H., Terauchi, R. 2003Gene expression analysis of plant host–pathogen interactions by SuperSAGEPNAS1001571815723CrossRefPubMedGoogle Scholar
  45. Mou, Z., Fan, W., Dong, X. 2003Inducers of plant systemic acquired resistance regulate NPR1 function through redox changesCell113935944CrossRefPubMedGoogle Scholar
  46. Neuhaus, G., Neuhaus-Url, G., Katagiri, F., Seipel, K., Chua, N-H. 1994Tissue-specific expression of as-1 in transgenic tobaccoPlant Cell6827834CrossRefPubMedGoogle Scholar
  47. Niggeweg, R., Thurow, C., Kegler, C., Gatz, C. 2000aTobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promotersJ. Biol. Chem.2751989719905CrossRefGoogle Scholar
  48. Niggeweg, R., Thurow, C., Weigel, R., Pfitzner, U., Gatz, C. 2000bTobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding propertiesPlant Mol. Biol.42775788CrossRefGoogle Scholar
  49. Nurnberger, T., Scheel, D. 2001Signal transmission in the plant immune responseTrends Plant Sci.6372379PubMedGoogle Scholar
  50. Overmyer, K., Brosche, M., Kangasjarvi, J. 2003Reactive oxygen species and hormonal control of cell deathTrends Plant Sci.8335342CrossRefPubMedGoogle Scholar
  51. Park, J.H., Oh, S.A., Kim, Y.H., Woo, H.R., Nam, H.G. 1998Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in ArabidopsisPlant Mol. Biol.37445454CrossRefPubMedGoogle Scholar
  52. Pontier, D., Miao, Z.H., Lam, E. 2001Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responsesPlant J.27529538CrossRefPubMedGoogle Scholar
  53. Qin, X.F., Holuigue, L., Horvath, D.M., Chua, N.H. 1994Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 elementPlant Cell6863874CrossRefPubMedGoogle Scholar
  54. Quiel, J.A., Bender, J. 2003Glucose conjugation of anthranilate by the Arabidopsis UGT74F2 glucosyltransferase is required for tryptophan mutant blue fluorescenceJ. Biol. Chem.27862756281CrossRefPubMedGoogle Scholar
  55. Reijans, M., Lascaris, R., Groeneger, A.O., Wittenberg, A., Wesselink, E., Oeveren, J., Wit, E., Boorsma, A., Voetdijk, B., Spek, H., Grivell, L.A., Simons, G. 2003Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiaeGenomics82606618CrossRefPubMedGoogle Scholar
  56. Schaller, F., Biesgen, C., Mussig, C., Altmann, T., Weiler, E.W. 200012-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesisPlanta210979984PubMedGoogle Scholar
  57. Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., Manners, J.M. 2000Coordinated plant defense responses in Arabidopsis revealed by microarray analysisProc. Natl. Acad. Sci. USA971165511660CrossRefPubMedGoogle Scholar
  58. Shah, J. 2005Lipids, lipases, and modifying enzymes in plant diseases resistanceAnnu Rev. Phytopathol.438.18.32CrossRefGoogle Scholar
  59. Strompen, G., Gruner, R., Pfitzner, U.M. 1998An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobaccoPlant Mol. Biol.37871883CrossRefPubMedGoogle Scholar
  60. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., Moor, B., Rouze, P., Moreau, Y. 2001A higher-order background model improves the detection of promoter regulatory elements by Gibbs samplingBioinformatics1711131122CrossRefPubMedGoogle Scholar
  61. Thijs, G., Marchal, K., Lescot, M., Rombauts, S., Moor, B., Rouze, P., Moreau, Y. 2002A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genesJ. Comput. Biol.9447464CrossRefPubMedGoogle Scholar
  62. Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., Potter, S., Ward, E., Ryals, J. 1993Regulation of pathogenesis-related protein-1a gene expression in tobaccoPlant Cell5159169CrossRefPubMedGoogle Scholar
  63. Uquillas, C., Letelier, I., Blanco, F., Jordana, X., Holuigue, L. 2004NPR1-independent activation of immediate early salicylic acid-responsive genes in ArabidopsisMol. Plant Microbe Interact.173442PubMedGoogle Scholar
  64. Loon, L., Strien, E. 1999The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteinsPhysiol. Mol. Plant Pathol.558597Google Scholar
  65. Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Montagu, M., Inze, D., Breusegem, F. 2004Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thalianaPlant J.394558CrossRefPubMedGoogle Scholar
  66. Vogt, T., Jones, P. 2000Glycosyltransferases in plant natural product synthesis: characterization of a supergene familyTrends Plant Sci.5380386CrossRefPubMedGoogle Scholar
  67. Wagner, U., Edwards, R., Dixon, D.P., Mauch, F. 2002Probing the diversity of the Arabidopsis glutathione S-transferase gene familyPlant Mol. Biol.49515532CrossRefPubMedGoogle Scholar
  68. Wingender, E., Dietze, P., Karas, H., Knuppel, R. 1996TRANSFAC: a database on transcription factors and their DNA binding sitesNucleic Acids Res.24238241CrossRefPubMedGoogle Scholar
  69. Xiang, C., Miao, Z.H., Lam, E. 1996Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxidePlant Mol. Biol.32415426CrossRefPubMedGoogle Scholar
  70. Yalpani, N, A.J. Enyedi, L.J, Raskin, I 1994Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis related proteins and virus resistance in tobaccoPlanta193372376CrossRefGoogle Scholar
  71. Zhang, Y., Fan, W., Kinkema, M., Li, X., Dong, X. 1999Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 geneProc. Natl. Acad. Sci. USA9665236528PubMedGoogle Scholar
  72. Zhang, Y., Tessaro, M.J., Lassner, M., Li, X. 2003Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistancePlant Cell1526472653PubMedGoogle Scholar

Copyright information

© springer 2005

Authors and Affiliations

  • Francisca Blanco
    • 1
    • 3
  • Virginia Garretón
    • 1
    • 4
  • Nicolas Frey
    • 1
  • Calixto Dominguez
    • 2
  • Tomás Pérez-Acle
    • 2
  • Dominique Van der  Straeten
    • 3
  • Xavier Jordana
    • 1
  • Loreto Holuigue
    • 1
    Email author
  1. 1.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de Genómica y Bioinformática, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Department of Molecular Genetics, Unit Plant Hormone Signaling and Bio-imagingGhent UniversityGentBelgium
  4. 4.AustralBiotech SA.SantiagoChile

Personalised recommendations