Plant Molecular Biology

, 60:21 | Cite as

Dirigent Proteins in Conifer Defense: Gene Discovery, Phylogeny, and Differential Wound- and Insect-induced Expression of a Family of DIR and DIR-like Genes in Spruce (Picea spp.)

  • Steven Ralph
  • Ji-Young Park
  • Jörg Bohlmann
  • Shawn D. Mansfield
Article

Abstract

The outer stem tissues of conifers provide a durable constitutive and inducible defense barrier consisting of suberized or lignified periderm, sclereids, a network of terpenoid-filled resin ducts, and phenolic phloem parenchyma cells. Microarray gene expression profiling of Sitka spruce (Picea sitchensis) bark attacked by stem-boring weevils (Pissodes strobi) or through mechanical wounding demonstrated significant accumulation of transcripts resembling dirigent protein (DIR) genes. To investigate this gene family and its spatial and temporal patterns of expression in conifer defense, we isolated cDNAs representing 19 unique DIR and DIR-like genes from Sitka spruce, white spruce (P. glauca), and interior spruce (P. glauca × engelmannii). Sequence alignments also identified a large number of DIR-like proteins in other plant species, which share several conserved protein motifs with known DIR proteins. Phylogenetic analysis of 72 DIR and DIR-like proteins suggests five distinct subfamilies, DIR-a and four DIR-like subfamilies (DIR-b, DIR-c, DIR-d and DIR-e). Previously characterized members of the DIR-a subfamily direct stereoselective phenolic coupling reactions in the formation of lignans and possibly lignins. The spruce genes identified here are members of the DIR-a and DIR-b subfamilies. Using gene-specific quantitative real-time PCR we measured constitutive expression for six DIR-a genes and three DIR-like genes in different stem tissues, green shoot tips, and roots of Sitka spruce. DIR-like genes revealed ubiquitous high expression in all tissues. In contrast, the six DIR-a genes showed a gradient of transcript abundance in stem tissues with highest levels in the outer cortex and lowest levels in the inner xylem. Gene-specific transcript profiling of six DIR-a genes confirmed rapid and strong accumulation (up to 500-fold) in wound- and weevil-induced stem bark and xylem. These findings suggest a role for spruce DIR genes in constitutive and induced phenolic defense mechanisms against stem-boring insects.

Keywords

conifer genomics gymnosperm lignan and lignin formation Pissodes strobi plant herbivore defense plant–insect interactions 

Abbreviations

DIR

dirigent

EST

expressed sequence tag

ORF

open reading frame

PAL

phenylalanine ammonia lyase

PP cells

phloem parenchyma cells

Supplementary material

Supp.doc (134 kb)

References

  1. Alfaro, R.I., Borden, J.H., King, J.N., Tomlin, E.S., McIntosh, R.L., Bohlmann, J. 2002

    Mechanisms of resistance in conifers against shoot infesting insects

    Wagner, M.R.Clancy, K.M.Lieutier, F.Paine, T.D. eds. Mechanisms and Deployment of Resistance in Trees to InsectsKluwer Academic PressDordrecht, The Netherlands101126
    Google Scholar
  2. Ayres, D.C., Loike, J.D. 1990Lignans: Chemical, Biological and Clinical PropertiesCambridge University PressUKGoogle Scholar
  3. Bendtsen, J.D., Nielsen, H., Heijne, G., Brunak, S. 2004Improved prediction of signal peptides: SignalP3.0J. Mol. Biol.340783795PubMedCrossRefGoogle Scholar
  4. Blanchard, D.J., Cicek, M., Chen, J., Esen, A. 2001Identification of β-glucosidase aggregating factor (BGAF) and mapping of BGAF binding regions on maize β-glucosidaseJ. Biol. Chem.2761189511901PubMedCrossRefGoogle Scholar
  5. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C.,  et al. 2001Minimum information about a microarray experiment (MIAME): toward standards for microarray dataNat. Genet.29365371PubMedCrossRefGoogle Scholar
  6. Burlat, V., Kwon, M., Davin, L.B., Lewis, N.G. 2001Dirigent proteins and dirigent sites in lignifying tissuesPhytochemistry57883897PubMedCrossRefGoogle Scholar
  7. Byun McKay, S.A., Hunter, W.L., Godard, K.A., Wang, S.X., Martin, D.M., Bohlmann, J., Plant, A.L. 2003Insect attack and wounding induce traumatic resin duct development and gene expression of (−)-pinene synthase in Sitka sprucePlant Physiol.133368378CrossRefGoogle Scholar
  8. Choi, J.J., Klostermann, S.J., Hadwiger, L.A. 2001A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion and cell deathPlant Physiol.125752762PubMedCrossRefGoogle Scholar
  9. Daniels, C.H., Fristensky, B., Wagoner, W., Hadwiger, L.A. 1987Pea genes associated with non-host disease resistance to Fusarium are also active in race-specific disease resistance to PseudomonasPlant Mol. Biol.8309316CrossRefGoogle Scholar
  10. Daniels, C.H., Cody, Y.S., Hadwiger, L.A. 1988Host responses in peas to challenge by wall components of Pseudomonas syringae pv. pisi races 1, 2 and 3Physiol. Biochem.7814511453Google Scholar
  11. Davin, L.B., Wang, H.B., Crowell, A.L., Bedgar, D.L., Martin, D.M., Sarkanen, S., Lewis, N.G. 1997Stereoselective biomolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active centerScience275362366PubMedCrossRefGoogle Scholar
  12. Davin, L.B., Lewis, N.G. 2000Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesisPlant Physiol.123453461PubMedCrossRefGoogle Scholar
  13. Emanuelsson, O., Nielsen, H., Brunak, S., Heijne, G. 2000Predicting subcellular localization of proteins based on their N-terminal amino acid sequenceJ. Mol. Biol.30010051016PubMedCrossRefGoogle Scholar
  14. Fäldt, J., Martin, D., Miller, B., Rawat, S., Bohlmann, J. 2003Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)−3-carene synthasePlant Mol. Biol.51119133PubMedCrossRefGoogle Scholar
  15. Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package) Version 3.62. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  16. Franceschi, V.R., Krekling, T., Berryman, A.A., Christiansen, E. 1998Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactionsAm. J. Bot.85601615CrossRefGoogle Scholar
  17. Franceschi, V.R., Krokene, P., Krekling, T., Christiansen, E. 2000Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae)Am. J. Bot.87314326PubMedCrossRefGoogle Scholar
  18. Franceschi, V.R., Krekling, T., Christiansen, E. 2002Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylemAm. J. Bot.89578586Google Scholar
  19. Fristensky, B., Riggleman, R.C., Wagoner, W., Hadwiger, L.A. 1985Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosanPhysiol. Plant Pathol.271528CrossRefGoogle Scholar
  20. Gang, D.R., Costa, M.A., Fujita, M., Dinkova-Kostova, A.T., Wang, H.B., Burlat, V., Martin, W., Sarkanen, S., Davin, L.B., Lewis, N.G. 1999Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesisChem. Biol.6143151PubMedCrossRefGoogle Scholar
  21. Gascuel, O. 1997BIONJ: an improved version of the NJ algorithm based on a simple model of sequence dataMol. Biol. Evol.14685695PubMedGoogle Scholar
  22. Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., Ryals, J. 1996Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheatPlant Cell8629643PubMedCrossRefGoogle Scholar
  23. Guindon, S., Gascuel, O. 2003A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihoodSyst. Biol.52696704PubMedCrossRefGoogle Scholar
  24. Hadwiger, L.A., Chiang, C.C., Horovitz, D. 1992Expression of disease resistance response genes in near-isogenic pea cultivars following challenge by Fusarium oxysporum race 1Mol. Plant Pathol.40259269CrossRefGoogle Scholar
  25. Huang, X., Madan, A. 1999CAP3: a DNA sequence assembly programGenome Res.9868877PubMedCrossRefGoogle Scholar
  26. Huber, D.P.W., Ralph, S., Bohlmann, J. 2004Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifersJ. Chem. Ecol.3023992418PubMedCrossRefGoogle Scholar
  27. Huber, W., Heydebreck, A., Sultmann, H., Poustka, A., Vingron, M. 2002Variance stabilization applied to microarray data calibration and to the quantification of differential expressionBioinformatics18S96S104PubMedGoogle Scholar
  28. Hudgins, J.W., Christiansen, E., Franceschi, V.R. 2003Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the PinaceaeTree Physiol.23361371PubMedGoogle Scholar
  29. Hui, D., Iqbal, J., Lehmann, K., Gase, K., Saluz, H.P., Baldwin, I.T. 2003Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata: V. Microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAsPlant Physiol.13118771893PubMedCrossRefGoogle Scholar
  30. Johansson, C.I., Saddler, J.N., Beatson, R.P. 2000Characterization of the polyphenolics related to the colour of western red cedar (Thuja plicata Donn) heartwoodHolzforschung54246254CrossRefGoogle Scholar
  31. Jones, D.T., Taylor, W.R., Thornton, J.M. 1992The rapid generation of mutation data matrices from protein sequencesComput. Appl. Biosci.8275282PubMedGoogle Scholar
  32. Kim, M.K., Jeon, J.H., Fujita, M., Davin, L.B., Lewis, N.G. 2002The western red cedar (Thuja plicata) 8–8´ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificityPlant Mol. Biol.49199214PubMedCrossRefGoogle Scholar
  33. Kolosova, N., Miller, B., Ralph, S., Ellis, B.E., Douglas, C., Ritland, K., Bohlmann, J. 2004Isolation of high-quality RNA from gymnosperm and angiosperm treesBiotechniques36821824PubMedGoogle Scholar
  34. Krokene, P., Solheim, H., Krekling, T., Christiansen, E. 2003Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistanceTree Physiol.23191197PubMedGoogle Scholar
  35. Lee, J., Parthier, B., Lobler, M. 1996Jasmonate signaling can be uncoupled from abscisic acid signaling in barley: identification of jasmonate-regulated transcripts which are not induced by abscisic acidPlanta199625632PubMedCrossRefGoogle Scholar
  36. Martin, D., Tholl, D., Gershenzon, J., Bohlmann, J. 2002Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stemsPlant Physiol.12910031018PubMedCrossRefGoogle Scholar
  37. Martin, D.M., Gershenzon, J., Bohlmann, J. 2003Induction of volatile terpene biosynthesis and diurnal emission of methyl jasmonate in foliage of Norway spruce (Picea abies)Plant Physiol.13215861599PubMedCrossRefGoogle Scholar
  38. Martin, D.M., Fäldt, J., Bohlmann, J. 2004Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamilyPlant Physiol.13519081927PubMedCrossRefGoogle Scholar
  39. MacRae, W.D., Towers, G.H.N. 1984Biological activities of lignansPhytochemistry2312071220CrossRefGoogle Scholar
  40. Miller, B., Madilao, L.L., Ralph, S., Bohlmann, J. 2005Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka sprucePlant Physiol.137369382PubMedCrossRefGoogle Scholar
  41. Morgenstern, B., Frech, K., Dress, A., Werner, T. 1998DIALIGN: finding local similarities by multiple sequence alignmentBioinformatics14290294PubMedCrossRefGoogle Scholar
  42. Nagy, N.E., Franceschi, V.R., Solheim, H., Krekling, T., Christiansen, E. 2000Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traitsAm. J. Bot.87302313PubMedCrossRefGoogle Scholar
  43. Nagy, N.E., Fossdal, C.G., Krokene, P., Krekling, T., Lonneborg, A., Solheim, H. 2004Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activityTree Physiol.24505515PubMedGoogle Scholar
  44. Nakai, K., Horton, P. 1999PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localizationTrends Biochem. Sci.243436PubMedCrossRefGoogle Scholar
  45. Page, R.D. 1996TREEVIEW: an application to display phylogenetic trees on personal computersComput. Appl. Biosci.12357358PubMedGoogle Scholar
  46. Pauletti, P.M., Araujo, A.R., Young, M.C.M., Giesbrecht, A.M., Bolzani, V.D. 2000nor-Lignans from the leaves of Styrax ferrugineus (Styracaceae) with antibacterial and antifungal activityPhytochemistry55597601PubMedCrossRefGoogle Scholar
  47. Raffa, K.F., Berryman, A.A. 1982Accumulation of monoterpenes associated with volatiles following inoculation of grand fir with a fungus transmitted by the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae)Can. Entom.114797810CrossRefGoogle Scholar
  48. Rahman, M.M., Gray, A.I. 2002Antimicrobial constituents from the stem bark of Feronia limoniaPhytochemistry597377PubMedCrossRefGoogle Scholar
  49. Ramakers, C., Rujiter, J.M., Deprez, R.H., Moorman, A.F. 2003Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) dataNeurosci. Lett.3396266PubMedCrossRefGoogle Scholar
  50. Reymond, P., Weber, H., Damond, M., Farmer, E.E. 2000Differential gene expression in response to mechanical wounding and insect feeding in ArabidopsisPlant Cell12707720PubMedCrossRefGoogle Scholar
  51. Reymond, P., Bodenhausen, N., Poecke, R.M., Krishnamurthy, V., Dicke, M., Farmer, E.E. 2004A conserved transcript pattern in response to a specialist and a generalist herbivorePlant Cell1631323147PubMedCrossRefGoogle Scholar
  52. Riggleman, R.C., Fristensky, B., Hadwiger, L.A. 1985The disease resistance response in pea is associated with increased levels of specific mRNAsPlant Mol. Biol.48186CrossRefGoogle Scholar
  53. Ro, D.-K., Arimura, G.-I., Lau, S.Y.W., Piers, E., Bohlmann, J. 2005Loblolly pine abietadienol/abietadienal oxidase PtAO is a multi-functional, multi-substrate cytochrome P450 monooxygenaseProc. Natl. Acad. Sci. USA10280608065PubMedCrossRefGoogle Scholar
  54. Sankaranarayanan, R., Sekar, K., Banerjee, R., Sharma, V., Surolia, A., Vijayan, M. 1996A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism foldNat. Struct. Biol.3596603PubMedCrossRefGoogle Scholar
  55. Smyth, G.K. 2004Linear models and empirical Bayes methods for assessing differential expression in microarray experimentsStat. Appl. Genet. Mol. Biol.3125Google Scholar
  56. Voelckel, C., Weisser, W.W., Baldwin, I.T. 2004An analysis of plant–aphid interactions by different microarray hybridization strategiesMol. Ecol.1331873195PubMedCrossRefGoogle Scholar
  57. Wang, Y., Nowak, G., Culley, D., Hadwiger, L.A., Fristensky, B. 1999Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus)Mol. Plant-Microbe Inter.12410418Google Scholar
  58. Wang, Y., Fristensky, B. 2001Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solaniMol. Breed.8263271CrossRefGoogle Scholar
  59. Williams, C.E., Collier, C.C., Nemacheck, J.A., Liang, C., Cambron, S.E. 2002A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvaeJ. Chem. Ecol.2814111428PubMedCrossRefGoogle Scholar
  60. Xia, Z.Q., Costa, M.A., Proctor, J., Davin, L.B., Lewis, N.G. 2000Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatumPhytochemistry55537549PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Steven Ralph
    • 1
  • Ji-Young Park
    • 2
  • Jörg Bohlmann
    • 1
    • 3
  • Shawn D. Mansfield
    • 2
  1. 1.Michael Smith LaboratoriesUniversity of British ColumbiadVancouverCanada
  2. 2.Department of Wood ScienceUniversity of British ColumbiaVancouverCanada
  3. 3.Departments of Botany and Forest SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations