Advertisement

Plant Molecular Biology

, Volume 59, Issue 1, pp 1–6 | Cite as

What it will take to Feed 5.0 Billion Rice consumers in 2030

  • Gurdev S. Khush
Article

Abstract

Major advances have occurred in rice production due to adoption of green revolution technology. Between 1966 and 2000, the population of densely populated low income countries grew by 90% but rice production increased by 130% from 257 million tons in 1966 to 600 million tons in 2000. However, the population of rice consuming countries continues to grow and it is estimated that we will have to produce 40 more rice in 2030. This increased demand will have to be met from less land, with less water, less labor and fewer chemicals. To meet the challenge of producing more rice from suitable lands we need rice varieties with higher yield potential and greater yield stability. Various strategies for increasing the rice yield potential being employed include: (1) conventional hybridization and selection procedures, (2) ideotype breeding, (3) hybrid breeding, (4) wide hybridization and (5) genetic engineering. Various conventional and biotechnology approach are being employed to develop durable resistance to diseases and insect and for tolerance to abiotic stresses. The availability of the rice genome sequence will now permit identification of the function of each of 60,000 rice genes through functional genomics. Once the function of a gene is identified, it will be possible to develop new rice varieties by introduction of the gene through traditional breeding in combination with marker aided selection or direct engineering of genes into rice varieties.

Keywords

conventional breeding genetic engineering hybrid breeding ideotype breeding wide hybridzation yield potential yield stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyoshi, D.E., Klee, H., Amasino, R., Nestor, E.W., Gordon, M. 1984T-DNA Agrobacterium tumefaciens encodes an enzyme for cytokinin biosynthesisProc. Natl. Acad. Sci. USA.8159945998PubMedGoogle Scholar
  2. Brown, L.R. 1996Tough Choices: Facing the Challenge of Food SecurityEarthscan PublicationsLondonGoogle Scholar
  3. Brown, L.R. 1997The Agricultural Link. How environmental Deterioration could Disrupt Economic Progress. World Watch Paper No. 136World Watch InstituteWashington, D.CGoogle Scholar
  4. Champoax, M.C., Wang, G., Sarkarung, S., MacKill, D.J., O’Toold, J.C., Huang, N., McCouch, S.R. 1995Locating genes associated with root morphology and drought avoidance in rice via linkage to RFLP markersTheor. Appl. Gent.90969981Google Scholar
  5. Christou, P., Ford, T.L., Kofron, M. 1991Production of transgenic rice (Oryza sativaL.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryosBio/Technology9957962CrossRefGoogle Scholar
  6. Datta S.K., Torrizo L., Tu J., Oliva N., Datta, K. (1997). Production and Molecular Evaluation of Transgenic Rice Plants. IRRI Discussion Paper Series No. 21. International Rice Research Institute, P.O. Box 933, Manila, PhilippinesGoogle Scholar
  7. Evans, L.T. 1993Raising the ceiling to Yield: key role of synergism between agronomy and plant breeding’Muralidharan, K.Siddique, E.A. eds. New Frontiers in Rice Research.Directorate of Rice ResearchHyderabad, India103107Google Scholar
  8. FoodAgriculture Organization, (FAO). 1996Food Balance Sheets 1992–1994AverageRome, ItalyGoogle Scholar
  9. Gan, S., Amasino, R.A. 1996Inhibition of leaf senescence by autoregulated production of cytokininScience27019861988Google Scholar
  10. Garg, A.K., Kim, Ju-Kon., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., Wu, R.J. 2002Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stressesProc. Natl. Acad. Sci. USA.991589815903CrossRefPubMedGoogle Scholar
  11. Hossain M., Sombilla M.A. et al. (1999). Emerging trends in demand for cereal crops. In: Bindraban P.S. (ed). Food Security at Different Scales: Demographic, Biophysical and Socio-economic Considerations, Wageningen; Secretariat TPE-WAU Bornsesteeg 47 NL-6708 PD, pp. 55–78Google Scholar
  12. Huang, N., Angeles, E.R., Domingo, J., Magpantay, G., Singh, G., Zhang, G., Kumaravadivel, N., Bennett, J., Khush, G.S. 1997Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCRTheor. Appl. Genet.95313320CrossRefGoogle Scholar
  13. Khush, G.S. 1995Breaking the yield barrier of riceGeo J.35329332Google Scholar
  14. Lawerence, P.L., Frey, K.J. 1976Backcross variability for grain yield in species crosses (Avena sativa X A Steribis)Euphytica247785CrossRefGoogle Scholar
  15. Peng, S., Laza, R.C., Visperas, R.M., Sanico, A.L., Cassman, K.G., Khush, G.S. 2000Grain yield of rice culitvars and lines developed in Philippines since 1996Crop Sci.40307314Google Scholar
  16. Postel, S. 1997Last OasisW.W. Norton and CompanyNew YorkGoogle Scholar
  17. Singh, S., Sidhu, J.S., Huang, N., Vikal, Y., Li, Z., Brar, D.S., Dhaliwal, H.S., Khush, G.S. 2001Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR 106Theor. Appl. Genet.10210111015CrossRefGoogle Scholar
  18. Soh K.G., Isherwood K.E. (1997). Short term prospects for world agriculture and International Fertilizer Industry Association, Presentation at IFA enlarged Council meeting, Monte Carlo, MonacoGoogle Scholar
  19. Tollenaar M. (1994). Yield potential of maize: impact of stress tolerance. In: Cassman K.G. (ed). Breaking the Yield Barrier. Proceeding of a Workshop on Rice Yield Potential in Favorable Environment. International Rice Research Institute, P.O. Box 933, Manila, Philippines, pp. 103–109Google Scholar
  20. Tu, J., Zhang, G., Datta, K., Xu, C., He, Y., Zhang, Q., Khush, G.S., Datta, S.K. 2000Field Performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis endoproteinNat. Biotechnol.1811011104CrossRefPubMedGoogle Scholar
  21. U.S. Bureau of Census. (1998). International Database, Electronic Database, Suitland M.D. Updated 15 June 1998Google Scholar
  22. Xiao, J., Grandillo, S., Ahn, S.N., McCouch, S.R., Tanksley, S.D. 1996Genes from wild rice improve yieldNature3841231224CrossRefGoogle Scholar
  23. Zheng, K., Huang, N., Bennett, J., Khush, G.S. 1995PCR-based marker-assisted selection in rice breeding. IRRI. Discussion Paper Series No. 12International Rice Research InstituteP.O. Box 933, Manila PhilippinesGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations