Plant Molecular Biology

, Volume 57, Issue 1, pp 115–127

A novel class of Helitron- related transposable elements in maize contain portions of multiple pseudogenes

  • Smriti Gupta
  • Andrea Gallavotti
  • Gabrielle A. Stryker
  • Robert J. Schmidt
  • Shailesh K. Lal
Article

Abstract

We recently described a maize mutant caused by an insertion of a Helitron type transposable element (Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, E. and Hannah, L.C., 2003, Plant Cell, 15: 381–391). Here we describe another Helitron insertion in the barren stalk1 gene of maize. The termini of a 6525 bp insertion in the proximal promoter region of the mutant reference allele of maize barren stalk1 gene (ba1-ref) shares striking similarity to the Helitron insertion we reported in the Shrunken-2 gene. This insertion is embedded with pseudogenes that differ from the pseudogenes discovered in the mutant Shrunken-2 insertion. Using the common terminal ends of the mutant insertions as a query, we discovered other Helitron insertions in maize BAC clones. Based on the comparison of the insertion site and PCR amplified genomic sequences, these elements inserted between AT dinucleotides. These putative non-autonomous Helitroninsertions completely lacked sequences similar to RPA (replication protein A) and DNA Helicases reported in other species. A blastn analysis indicated that both the 5′ and 3′ termini of Helitrons are repeated in the maize genome. These data provide strong evidence that Helitron type transposable elements are active and may have played an essential role in the evolution and expansion of the maize genome.

Keywords

genome evolution Helitrons transposable elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990Basic local alignment search toolJ. Mol. Biol.215403410Google Scholar
  2. Bennetzen, J.L. 2000Transposable element contributions to plant gene and genome evolutionPlant Mol. Biol.42251269Google Scholar
  3. Bennetzen, J.L., Ramakrishna, W. 2002Exceptional haplotype variation in maizeProc. Natl. Acad. Sci. USA9990939095Google Scholar
  4. Brendel, V., Zhu, W. 2002Computational modeling of gene structure in Arabidopsis thalianaPlant Mol. Biol.484958Google Scholar
  5. Collins, N., Drake, J., Ayliffe, M., Sun, Q., Ellis, J., Hulbert, S., Pryor, T. 1999Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutantsPlant Cell1113651376CrossRefPubMedGoogle Scholar
  6. Doring, H.P., Starlinger, P. 1986Molecular genetics of transposable elements in plantsAnnu. Rev. Genet.20175200Google Scholar
  7. Eckardt, N.A. 2003A new twist on transposon: the maize genome harbors a Helitron insertionPlant Cell15293295Google Scholar
  8. Engels, W.R. 1983The P family of transposable elements in DrosophilaAnnu. Rev. Genet.17315344Google Scholar
  9. Fedoroff N.V. (1989). In: Berg D.E., Howe M.M. (eds.), Mobile DINA American Society for Microbiology Press, Washington DC. PP. 375–411Google Scholar
  10. Fedoroff, N.V. 1989About maize transposable elements and developmentCell56181191Google Scholar
  11. Feschotte, C., Jiang, N., Wessler, S.R. 2002Plant transposable elements: where genetics meets genomicsNat. Rev. Genet.3329341Google Scholar
  12. Feschotte, C., Wessler, S.R. 2001Treasures in the attic: Rolling circle transposons discovered in eucaryotic genomesProc. Natl. Acad. Sci. USA9889238914Google Scholar
  13. Fu, H., Dooner, H.K. 2002Intraspecific violation of genetic colinearity and its implications in maizeProc. Natl. Acad. Sci. USA9995739578Google Scholar
  14. Gallavotti, A., Zhao, Q., Kyozuka, J., Meeley, R., Ritter, M., Doebley, J., Enrico Pe‘, M., Schmidt, R.J. 2004The role of barren stalk1 in the architecture of maizeNature132630635Google Scholar
  15. Giroux, M.J., Hannah, L.C. 1994ADP-glucose pyrophosphorylase in shrunken2 and brittle2 mutants of maizeMol. Gen. Genet.243400408Google Scholar
  16. Gong, X., Kaushal, S., Ceccarelli, E., Bogdanova, N., Neville, C., Nguyen, T., Clark, H., Khatib, Z.A., Valentine, M., Look, A.T., Rosenthal, N. 1997Developmental regulation of Zbu1, a DNA-binding member of the SWI2/SNF2 familyDev. Biol.183166182Google Scholar
  17. Hall, R.M., Collis, C.M. 1995Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombinationMol. Microbiol.15593600Google Scholar
  18. Hofmeyer J.D.J. (1930). The inheritance and linkage relationships of barrenstalk1 and barrenstalk2, two mature plant characters of maize. Ph.D. Dissertation, Cornell University, Ithaca, New York, USAGoogle Scholar
  19. Jin, Y.K., Bennetzen, J.L. 1989Structure and coding properties of Bs1, a maize retrovirus- like transposable elementProc Natl Acad Sci USA.8662356239Google Scholar
  20. Kapitonov, V.V., Jurka, J. 2001Rolling circle transposons in eukaryotesProc. Natl. Acad. Sci. USA1787148719Google Scholar
  21. Kapitonov, V.V., Jurka, J. 2003Molecular paleontology of transposable elements in the Drosophila melanogaster genomeProc. Natl. Acad. Sci. USA10065696574Google Scholar
  22. Khan, S.A. 2000Plasmid rolling circle replication: recent developmentMol. Microl.37477484Google Scholar
  23. Kunze, R., Saedler, H., Lonnig, W.E. 1997Plant transposable elementsAdv. Bot. Res.27331470Google Scholar
  24. Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, E., Hannah, L.C. 2003The maize genome contains a Helitron insertionPlant Cell15381391Google Scholar
  25. Lander, E.S.,  et al. 2001Initial sequencing and analysis of the human genomeNature.409860921Google Scholar
  26. Lawrence, C.J., Dong, Q., Polacco, M.L., Seigfried, T.E., Brendel, V. 2004MaizeGDB, the community database for’ maize genetics and genomicsNucleic. Acids Res.32393397Google Scholar
  27. Levesque, C., Brassard, S., Lapointe, J., Roy, P.H. 1994Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integronsGene1424954CrossRefPubMedGoogle Scholar
  28. McCarty, D.R. 1986A simple method for extraction of RNA’from maize tissueMaize Genet. Coop. Newslett.6061Google Scholar
  29. Mendiola, M.V., Bernales, I., Cruz, F. 1994Differential roles of the transposon termini in IS91 transpositionProc. Natl. Acad. Sci. (USA)9119221926Google Scholar
  30. Nevers, P., Shepherd, N., Saedler, H. 1986Plant transposble elementsAdv. Bot. Res.12102203Google Scholar
  31. Poulter, R.T., Goodwin, T.J., Butler, M.I. 2003Vertebrate helentrons and other novel HelitronsGene313201212Google Scholar
  32. Ramakrishna, W., Emberton, J., Ogden, M., SanMiguel, P., Bennetzen, J.L. 2002Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangementPlant Cell1332133223Google Scholar
  33. Ritter, M.K., Padilla, C.M., Schmidt, R.J. 2002The maize mutant barren stalk1 is defective in axillary meristem developmentAm. J. Bot.89203210Google Scholar
  34. Rowe-Magnus, D.A., Mazel, D. 2001Integrons: natural tools for bacterial genome evolutionCurr. Opin. Microbiol.5565569Google Scholar
  35. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W. 1984Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamicsProc. Natl. Acad. Sci. USA8180148018Google Scholar
  36. Singer, M.F., Krek, V., McMillan, J.P., Swergold, G.D., Thayer, R.E. 1993LINE-1: a human transposable elementGene135183188Google Scholar
  37. Song, R., Messing, J. 2003Gene expression of a gene family in maize based on noncollinear haplotypesProc. Natl. Acad. Sci. USA10090559060Google Scholar
  38. Tavakoli, N., Comanducci, A., Dodd, H.M., Lett, M.C., Albiger Bennett, P. 2000IS1294, a DNA element that transposes by RC transpositionPlasmid446684Google Scholar
  39. Usuka, J., Brendel, V. 2000Gene structure prediction by spliced alignment of genomic DNA with protein sequences: increased accuracy by differential splice site scoringJ. Mol. Biol.29710751085Google Scholar
  40. Usuka, J., Zhu, W., Brendel, V. 2000Optimal spliced alignment of homologous cDNA to a genomic DNA templateBioinformatics16203211Google Scholar
  41. Wessler, S.R., Bureau, T.E., White, S.E. 1995LTR-retrotransposons and MITEs: Important players in the evolution of plant genomesCurr. Open. Genet. Dev.5814821Google Scholar
  42. Zhu, W., Brendel, V. 2002Gene structure identification with MyGV using cDNA evidence and protein homologs to improve al binitio predictionsBioinformatics18761762Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Smriti Gupta
    • 1
  • Andrea Gallavotti
    • 2
  • Gabrielle A. Stryker
    • 1
  • Robert J. Schmidt
    • 2
  • Shailesh K. Lal
    • 1
  1. 1.Department of Biological SciencesOakland UniversityRochesterUSA
  2. 2.Department of BiologyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations