Plant Molecular Biology

, Volume 56, Issue 5, pp 795–809 | Cite as

Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)

  • Jiahn-Chou Guan
  • Tsung-Luo Jinn
  • Ching-Hui Yeh
  • Shi-Pin Feng
  • Yih-Ming Chen
  • Chu-Yung Lin
Article

Abstract

The cytosolic class I small heat shock proteins (sHSP-CI) represent the most abundant sHSP in plants. Here, we report the characterization and the expression profile of nine members of the sHSP-CI gene family in rice (Oryza sativa Tainung No.67), of which Oshsp16.9A, Oshsp16.9B, Oshsp16.9C, Oshsp16.9D and Oshsp17.9B are clustered on chromosome 1, and Oshsp17.3, Oshsp17.7, Oshsp17.9A and Oshsp18.0 are clustered on chromosome 3. Oshsp17.3 and Oshsp18.0 are linked by a 356-bp putative bi-directional promoter. Individual gene products were identified from the protein subunits of a heat shock complex (HSC) and from in vitro transcription/ translation products by two-dimensional gel electrophoreses (2-DE). All sHSP-CI genes except Oshsp17.9B were induced strongly after a 2-h heat shock treatment. The genes on chromosome 3 were induced rapidly at 32  and 41 °C, whereas those on chromosome 1 were induced slowly by similar conditions. Seven of these genes, except Oshsp16.9D and Oshsp17.9B, were induced by arsenite (As), but only genes on chromosome 3 were strongly induced by azetidine-2-carboxylic acid (Aze, a proline analog) and cadmium (Cd). A similar expression profile of all sHSP-CI genes at a lower level was evoked by ethanol, H2O2 and CuCl2 treatments. Transient expression assays of the promoter activity by linking to GUS reporter gene also supported the invivo selective expression of the sHSP-CI genes by Aze treatment indicating the differential induction of rice sHSP-CI genes is most likely regulated at the transcriptional level. Only Oshsp16.9A abundantly accumulated in mature dry seed also suggested additionally prominent roles played by this HSP in development.

Keywords

azetidine characterization and expression profiles class 1 sHSP gene family heavy metals Oryza sativa reactive oxygen species 

Abbreviations

ACD

α-crystallin domain

As

arsenite

Aze

L-azetidine-2-carboxlyic acid

Cd

cadmium

GUS

β-glucuronidase

HSC

heat shock complex

HSE

heat shock response element

ROS

reactive oxygen species

sHSP

small heat shock protein

sHSP-CI

class I small heat shock protein

2-DE

two-dimensional gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G., Rakwal, R., Iwahashi, H. 2002Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cuesBiochem .Biophys. Res. Commun.29410091016Google Scholar
  2. Almoguera, C., Prieto-Dapena, P., Jordano, J. 1998Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elementsPlant J.13437446Google Scholar
  3. Almoguera, C., Rojas, A., Díaz-Martín, J., Prieto-Dapena, P., Carranco, R., Jordano, J. 2002A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflowerJ. Biol. Chem.2774386643872Google Scholar
  4. Banzet, N., Richaud, C., Deveaux, Y., Kazmaier, M., Gagnon, J., Triantaphylidès, C. 1998Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cellsPlant J.13519527Google Scholar
  5. Chang, P.F.L., Huang, C.I., Chang, F.C., Tseng, T.S., Lin, W.C., Lin, C.Y. 2001Isolation and characterization of the third gene encoding a 16.9 kDa class I low-molecular-mass heat shock protein, Oshsp16.9C, in riceBot. Bul. Acad. Sin.428592Google Scholar
  6. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., Luan, S. 2002Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in ArabidopsisPlant Physiol.129661677Google Scholar
  7. Desikan, R., Mackerness, S.A.H., Hancock, J.T., Neill, S.J. 2001Regulation of the Arabidopsis transcriptome by oxidative stressPlant Physiol.127159172Google Scholar
  8. Edelman, L., Czarnecka, E., Key, J.L. 1988Induction and accumulation of heat shock-specific poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatmentsPlant Physiol.8610481056Google Scholar
  9. Guan, J.C., Li, X.H., Zhang, Q.F., Kochert, G., Lin, C.Y. 2003Characterization of a unique genomic clone located 5′ upstream of the Oshsp16.9B gene on chromosome 1 in rice (Oryza sativa L cv Tainung No.67).Theor. Appl. Genet.106503511Google Scholar
  10. Haslbeck, M., Braun, N., Stromer, T., Richter, B., Model, N., Weinkaul, S., Buchner, J. 2004Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiaeEMBO J.23638649Google Scholar
  11. He, H., Sonicn, F., Grammatikakis, N., Li, Y., Siganou, A., Gong, J., Brown, S.A., Kingston, R.E., Calderwood, S.K. 2003Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stressJ. Biol. Chem.2783546535475Google Scholar
  12. Hong, S.K., Vierling, E. 2000Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stressProc. Natl. Acad. Sci. USA9743924397Google Scholar
  13. Hsieh, M.S., Chen, J.T., Jinn, T.L., Chen, Y.M., Lin, C.Y. 1992A class of soybean low molecular weight heat shock proteinsPlant Physiol.9912791284Google Scholar
  14. Jinn, T.L., Chen, Y.M., Lin, C.Y. 1995Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybeanPlant Physiol.108693701Google Scholar
  15. Jofré, A., Molinas, M., Pla, M. 2003A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress.Planta217813819Google Scholar
  16. Key, J.L., Lin, C.Y., Chen, Y.M. 1981Heat shock proteins of higher plantsProc. Natl. Acad. Sci. USA7835263530Google Scholar
  17. Kotak, S., Port, M., Ganguli, A., Bicker, F., von Koskull-Doring, P. 2004Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localizationPlant J.3998112Google Scholar
  18. Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J. 2000Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plantsProc. Natl. Acad. Sci. USA9729402945Google Scholar
  19. Kuo, H.F., Tsai, Y.F., Young, L.S., Lin, C.Y. 2000Ethanol treatment triggers a heat shock-like response but no thermotolerance in soybean (Glycine max cv Kaohsiung No.8) seedlings.Plant Cell Environ.2310991108Google Scholar
  20. Lee, Y.L., Chang, P.F.L., Yeh, K.W., Jinn, T.L., Kung, C.C.S., Lin, W.C., Chen, Y.M., Lin, C.Y. 1995Cloning and characterization of a cDNA encoding an 18.0-kDa class-I low-molecular-weight heat-shock protein from riceGene165223227Google Scholar
  21. Lee, Y.R.J., Nagao, R.T., Lin, C.Y., Key, J.L. 1996Induction and regulation of heat-shock gene expression by an amino acid analog in soybean seedlingsPlant Physiol.110241248Google Scholar
  22. Lee, B.H., Won, S.H., Lee, H.S., Miyao, M., Chung, W.I., Kim, I.J., Jo, J. 2000Expression of the chloroplast-localized small heat shock protein by oxidative stress in riceGene245283290Google Scholar
  23. Li, B., Liu, H.T., Sun, D.Y., Zhou, R.G. 2004Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitroPlant Cell Physiol.45627634Google Scholar
  24. Lin, C.Y., Roberts, J.K., Key, J.L. 1984Acquisition of thermotolerance in soybean seedlings 1 Synthesis and accumulation of heat shock proteins and their cellular localization.Plant Physiol.74152160Google Scholar
  25. Liu, H.T., Li, B., Shang, Z.L., Li, X.Z., Mu, R.L., Sun, D.Y., Zhou, R.G. 2003Calmodulin is involved in heat shock signal transduction in wheat.Plant Physiol.13211861195Google Scholar
  26. Lohmann, C., Eggers-Schumacher, G., Wunderlich, M., Schöffl, F. 2004Two different heat shock transcription factors regulate immediate early expression of stress genes in ArabidopsisMol. Gen. Genom.2711121Google Scholar
  27. Lubaretz, O., zur Nieden, U. 2002Accumulation of plant small heat-stress proteins in storage organsPlanta215220228Google Scholar
  28. Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.T., Marmiroli, N. 2002Molecular genetics of heat tolerance and heat shock proteins in cerealsPlant Mol. Biol.48667681Google Scholar
  29. Malik, M.K., Slovin, J.P., Hwang, C.H., Zimmerman, J.L. 1999Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerancePlant J.208999Google Scholar
  30. Nakamoto, H., Susuki, N., Roy, S.K. 2000Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteriaFEBS Lett.483169174Google Scholar
  31. Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.D. 2001Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we needCell Stress Chaperon.6177189Google Scholar
  32. Panchuk, I.I., Volkov, R.A., Schöffl, F. 2002Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in ArabidopsisPlant Physiol.129838853Google Scholar
  33. Plesofsky-Vig, N., Brambl, R. 1995Disruption of the gene for hsp30, an α-crystallin-related heat shock protein of Neurospora crassa, causes defects in thermotoleranceProc. Natl. Acad. Sci. USA9250325036Google Scholar
  34. Rentel, M.C., Lecourieux, D., Ouaked, F., Usher, S., Petersen, L., Okamoto, H., Knight, H., Peck, S.C., Grierson, C., Hirt, H., Knight, M.R. 2004OXI1 kinase is necessary for oxidative burst-mediated signaling in ArabidopsisNature427858861Google Scholar
  35. Rojas, A., Almoguera, C., Carranco, R., Scharf, K.D., Jordano, J. 2002Selective activation of the developmentally regulated Hahsp17.6 G1 promoter by heat stress transcription factorsPlant Physiol.12912071215Google Scholar
  36. Sabehat, A., Lurie, S., Weiss, D. 1998Expression of small heat-shock proteins at low temperaturesPlant Physiol.117651658Google Scholar
  37. Sanmiya, K., Suzuki, K., Egawa, Y., Shono, M. 2004Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plantsFEBS Lett.557265268Google Scholar
  38. Scharf, K.D., Siddique, M., Vierling, E. 2001The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing crystalline domains (Acd proteins)Cell Stress Chaperon.6225237Google Scholar
  39. Schöffl, F., Prändl, R., Reindl, A. 1998Regulation of the heat-shock responsePlant Physiol.11711351141Google Scholar
  40. Shen, Q.X., Zhang, P.N., Ho, T.H.D. 1996Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barleyPlant Cell811071119CrossRefPubMedGoogle Scholar
  41. Shou, H.X., Bordallo, P., Fan, J.B., Yeakley, J.M., Bibikova, M., Sheen, J., Wang, K. 2004Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maizeProc. Natl. Acad. Sci. USA10132983303Google Scholar
  42. Storozhenko, S., Pauw, P.D., Van Montagu, M., Inze, D., Kushnir, S. 1998The heat-shock element is a functional component of the Arabidopsis APX1 gene promoterPlant Physiol.1181005Google Scholar
  43. Sung, D.Y., Vierling, E., Guy, C.L. 2001Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene familyPlant Physiol.126798800Google Scholar
  44. Sung, D.Y., Kaplan, F., Lee, K.J., Guy, C.L. 2003Acquired tolerance to temperature extremesTrends Plant Sci.8179187Google Scholar
  45. Tseng, T.S., Tzeng, S.S., Yeh, K.W., Yeh, C.H., Chang, F.C., Chen, Y.M., Lin, C.Y. 1993The heat-shock response in rice seedlings: isolation and expression of cDNAs that encode class I low-molecular-weight heat-shock proteinsPlant Cell Physiol.34165168Google Scholar
  46. Tzeng, S.S., Chen, Y.M., Lin, C.Y. 1993Isolation and characterization of genes encoding 16.9 kD heat shock proteins in Oryza sativaBot. Bull. Acad. Sin.34133142Google Scholar
  47. van Montfort, R.L.M., Basha, E., Friedrich, K.L., Slingsby, C., Vierling, E. 2001Crystal structure and assembly of a eukaryotic small heat shock proteinNat. Struct. Biol.810251030Google Scholar
  48. Wang, W.X., Vinocur, B., Altman, A. 2003Plant response to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerancePlanta218114CrossRefPubMedGoogle Scholar
  49. Wehmeyer, N., Vierling, E. 2000The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests general protective role in desiccation tolerancePlant Physiol.12210991108Google Scholar
  50. Yeh, C.H., Yeh, K.W., Wu, S.H., Chang, P.F.L., Chen, Y.M., Lin, C.Y. 1995A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitroPlant Cell Physiol.3613411348Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jiahn-Chou Guan
    • 1
  • Tsung-Luo Jinn
    • 1
  • Ching-Hui Yeh
    • 2
  • Shi-Pin Feng
    • 1
  • Yih-Ming Chen
    • 1
  • Chu-Yung Lin
    • 1
  1. 1.Institute of Plant BiologyNational Taiwan UniversityTaipeiTaiwan, ROC
  2. 2.Department of Life ScienceNational Central UniversityTaiwan, ROC

Personalised recommendations