Plant Molecular Biology

, Volume 56, Issue 3, pp 439–463 | Cite as

Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids

  • Nataliya Y. Komarova
  • Thomas Grabe
  • Dirk J. Huigen
  • Vera Hemleben
  • Roman A. Volkov
Article

Abstract

Uniparental activity of ribosomal RNA genes (rDNA) in interspecific hybrids is known as nucleolar dominance (ND). To see if difference in rDNA intergenic spacers (IGS) might be correlated with ND, we have used artificial Solanum allopolyploids and back-crossed lines. Combining fluorescence in situ hybridization and quantification of the level of the rRNA precursor by real-time PCR, we demonstrated that an expression hierarchy exists: In leaves, roots, and petals of the respective allopolyploids, rDNA of S lycopersicum (tomato) dominates over rDNA of S. tuberosum (potato), whereas rDNA of S. tuberosum dominates over that of the wild speciesS. bulbocastanum. Also in a monosomic addition line carrying only one NOR-bearing chromosome of tomato in a potato background the dominance effect was maintained. These results demonstrate that there is possible correlation between transcriptional dominance and number of conservative elements downstream of the transcription start in the Solanum rDNA. In anthers and callus tissues under-dominant rDNA was slightly (S. lycopersicum/S. tuberosum) or strongly (S. tuberosum/S. bulbocastanum) expressed indicating developmental modulation of ND. In leaves and petals, repression of the respective parental rDNA correlated with cytosine methylation at certain sites conserved in the IGS, whereas activation of under-dominant rDNA in anthers and callus tissues was not accompanied by considerable changes of the methylation pattern.

developmental regulation differential activation/repression epigenetic silencing nucleolus subrepeats uniparental expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumuganathan, K. and Earle, E.D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218.Google Scholar
  2. Bennett, R.I. and Smith, A.G. 1976. Nuclear DNA amounts in angiosperms. Phils. Trans. R. Soc. London B274: 227–274.Google Scholar
  3. Bennett, R.I. and Smith, A.G. 1991. The complete nucleotide sequence of the intergenic spacer region of an rDNA operon from Brassica oleracea and its comparison with other crucifers. Plant Mol. Biol. 16: 1095–1098.PubMedGoogle Scholar
  4. Bhatia, S., Singth Negi, M. and Lakshmikumaran, M. 1996. Structural analysis of the rDNA intergenic spacer of Brassica nigra: evolutionary divergence of the spacers of the three diploid Brassica species. J. Mol. Evol. 43: 460–468.PubMedGoogle Scholar
  5. Borisjuk, N., Borisjuk, L., Komarnytsky, S., Timeva, S., Hemleben, V., Gleba, Y. and Raskin, I. 2000. Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat. Biotechnol. 18: 1303–1306.PubMedGoogle Scholar
  6. Borisjuk, N., Borisjuk, L., Petjuch, G. and Hemleben, V. 1994. Comparison of nuclear ribosomal RNA genes among Solanum species and other Solanaceae. Genome 37: 271–279.PubMedGoogle Scholar
  7. Borisjuk, N.V., Davidjuk, Y.M., Kostishin, S.S., Miroshnichenko, G.P., Velasco, R., Hemleben, V. and Volkov, R.A. 1997. Structural analysis of rDNA in the genus Nicotiana. Plant Mol. Biol. 35: 655–660.PubMedGoogle Scholar
  8. Borisjuk. N. and Hemleben, V. 1993. Nucleotide sequence of potato rDNA intergenic spacer. Plant Mol. Biol. 21: 381–384.PubMedGoogle Scholar
  9. Borisjuk, N.V., Momot, V.P. and Gleba Y. 1988. Novel class of rDNA repeat units in somatic hybrids between Nicotiana and Atropa. Theor. Appl. Genet. 76: 108–112.Google Scholar
  10. Busby, S.J. and Reeder, R.H. 1983. Spacer sequences regulate transcription of ribosomal gene plasmids injected into Xenopus embryos. Cell 34: 989–996.PubMedGoogle Scholar
  11. Caudy, A.A. and Pikaard, C.S. 2002. Xenopus ribosomal RNA gene intergenic spacer elements conferring transcriptional enhancement and nucleolar dominance-like competition in oocytes. J. Biol. Chem. 277: 31577–31584.PubMedGoogle Scholar
  12. Chen, Z.J., Comai, L. and Pikaard, C.S. 1998. Gene dosage and stochastic effects determine the severiti and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. USA 95: 14891–14896.PubMedGoogle Scholar
  13. Chen, Z.J. and Pikaard, C.S. 1997a. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11: 2124–2136.PubMedGoogle Scholar
  14. Chen, Z.J. and Pikaard, C.S. 1997b. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/ silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA 94: 3442–2447.PubMedGoogle Scholar
  15. Cluster, P.D., Calderini, O., Puppilli, F., Crea, F., Damiani, F. and Arcioni, S. 1996. The fate of ribosomal genes in three interspecific somatic hybrids of Medicago sativa; three different outcomes including the rapid amplification of new spacer-length variants. Theor. Appl. Genet. 93: 801–808.Google Scholar
  16. Csink, A.K. and Henikoff, S. 1996. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381: 529–531.PubMedGoogle Scholar
  17. Da Rocha, P.S. C.F. and Bertrand, H. 1995. Structure and comparative analysis of the rDNA intergenic spacer of Brassica rapa: implications for the function and evolution of the Cruciferae spacer. Eur. J. Biochem. 229: 550–557.PubMedGoogle Scholar
  18. Doelling, J.H., Gaudino, R.J. and Pikaard, C.S. 1993. Functional analysis of Arabidopsis thaliana rRNA gene and spacer promoters in vivo and by transient expression. Proc. Natl. Acad. Sci. USA 90: 7528–7532.PubMedGoogle Scholar
  19. Doelling, J.H. and Pikaard, C.S. 1995. The minimal ribosomal RNA gene promoter of Arabidopsis thaliana includes acritical element at the transcription initiation site.Plant J. 8:683–692.PubMedGoogle Scholar
  20. Doelling, J.H. and Pikaard, C.S. 1996. Species-specificity of rRNA gene transcription in plants manifested as a switch in polymerase-specificity.Nucleic Acids Res. 24: 4725–4732.PubMedGoogle Scholar
  21. Dover, G.A. and Flavell, R.V. 1984. Molecular co-evolution: rDNA divergence and the maintenance of function. Cell 38: 622–623.PubMedGoogle Scholar
  22. Engel, J. 1997. Signifikante Schule der schlichten Statistik. Filander Verlag GmbH, Fu¨ rth, Germany.Google Scholar
  23. Fan, H., Kimitaka, Y., Miyanishi, M., Sugita, M. and Sugiura, M. 1995. In vitro transcription of plant RNA polymerase I-dependent rRNA genes is species-specific. Plant J 8: 295–298.PubMedGoogle Scholar
  24. Flavell, R.B. 1986. The structure and control of expression of ribosomal RNA genes. Ox. Surv. Plant Mol. Cell Biol. 3: 252–274.Google Scholar
  25. Flavell, R.B., O'Dell, M. and Thompson, W.F. 1988. Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204: 523–534.PubMedGoogle Scholar
  26. Frieman, M., Chen, Z.J., Saez-Vasquez, J., Shen, L.A. and Pikaard, C.S. 1999. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: tests of transcription factor involvement in nucleolar dominance. Genetics 152: 451–460.PubMedGoogle Scholar
  27. Ganal, M.W., Lapitan, N.L.V. and Tanksley, S.D. 1988. A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum). Mol. Gen. Genet. 213: 262–268.Google Scholar
  28. Garriga-Caldere´, F., Huigen, D.J., Angrisano, A., Jacobsen, E. and Ramanna, M.S. 1998. Transmission of alien tomato chromosomes from BC1 to BC2 progenies derived from backcrossing potato(+)tomato fusion hybrids to potato: the selection of single additions for seven different tomato chromosomes. Theor. Appl. Genet. 96: 155–163.Google Scholar
  29. Garriga-Caldere´, F., Huigen, D.J., Filotico, F., Jacobsen, E. and Ramanna, M.S. 1997. Identification of alien chromosomes through GISH and RLFP analysis and the potential for the establishment of potato lines with monosomic additions of tomato chromosomes. Genome 40: 666–673.Google Scholar
  30. Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschabel, U., Kaufmann, H., Thomson, R.D., Bonierbale, M.W., Ganal, M.W., Tanksley, S.D. and Salamini, F. 1991. RFLP maps of potato and their alignment with the homologous tomato genome. Theor. Appl. Genet. 83: 49–57.Google Scholar
  31. Georgiev, S., Papazova, N. and Gecheff, K. 2001. Transcriptional activity of an inversion split NOR in barley (Hordeum vulgare L.). Chromosome Res. 9: 507–514.PubMedGoogle Scholar
  32. Grant, V. 1981. Plant Speciation, 2nd edn. Columbia University Press, New York.Google Scholar
  33. Gruenbaum, Y., Naveh-Many, T., Cedar, H. and Razin, A. 1981. Sequence specificity of methylation in higher plant DNA. Nature 292: 860–862.PubMedGoogle Scholar
  34. Grummt, I. and Pikaard, C.S. 2003. Epigenetic mechanisms controlling RNA polymerase I transcription. Nat. Rev. Mol. Cell Biol. 4: 641–649.PubMedGoogle Scholar
  35. Grummt, I., Roth, E. and Paule, M.R. 1982. rRNA transcription in vitro is species-specific. Nature 296: 173–174.PubMedGoogle Scholar
  36. Gustafson, J.P., Dera, A.R. and Petrovic, S. 1988. Expression of modified rye ribosomal RNA genes in wheat. Proc. Natl. Acad. Sci. USA 85: 3943–3945.Google Scholar
  37. Heitz, E. 1931. Nucleolen und Chromosomen in der Gattung Vicia. Planta 15: 495–505.Google Scholar
  38. Hemleben, V., Ganal, M., Gerstner, J., Schiebel, K., Torres, R.A. 1988. Organization and length heterogeneity of plant ribosomal RNA genes. In: G. Kahl (Ed.), The Architecture of Eukaryotic Gene. VHC. Weinheim, pp. 371–384.Google Scholar
  39. Honjo, T. and Reeder, R.H. 1973. Preferential transcription of Xenopus laevis ribosomal RNA in interspecific hybrids between Xenopus laevis and Xenopus mulleri. J. Mol. Biol. 80: 217–228.PubMedGoogle Scholar
  40. Houchins, K., O'Dell, M., Flavell, R.B. and Gustafson, J.P. 1997. Cytosine methylation and nucleolar dominance in cereal hybrids. Mol. Gen. Genet. 55: 294–301.Google Scholar
  41. Izawa, T., Foster, R. and Chue, N.-H. 1993. Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230: 1131–1144.PubMedGoogle Scholar
  42. Jacobsen, E., De Jong, J.H., Kamstra; S.A., Van Den Berg, P.M. M.M. and Ramanna, M.S. 1995. Genomic in situ hybridization (GISH) and RFLP analysis for the identifi-cation of alien chromosomes in the backcross progeny of potato(+)tomato fusion hybrids. Heredity 74: 250–257.Google Scholar
  43. Kiss, T., Kis, M. and Solymosy, F. 1989a. Nucleotide sequence of a 25S rRNA gene from tomato. Nucleic Acids Res. 17: 796.PubMedGoogle Scholar
  44. Kiss, T., Szkukalek, A. and Solymosy, F. 1989b. Nucleotide sequence of a 17S (18S) rRNA gene from tomato. Nucleic Acids Res. 17: 2127.PubMedGoogle Scholar
  45. Labhart, P. and Reeder, R.H. 1984. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37: 285–289.PubMedGoogle Scholar
  46. Lawrence, R.J., Earley, K., Pontes, O., Silva, M., Chen, Z.J., Neves, N., Viegas, W. and Pikaard, C.S. 2004. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell 13: 599–609.PubMedGoogle Scholar
  47. Lee, H.S. and Chen, Z.J. 2001. Protein-coding genes are epigenetically regulated in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. 98: 6753–6758.PubMedGoogle Scholar
  48. Levin, D.A. 2002. The Role of Chromosomal Change in Plant Evolution. Oxford University Press, Oxford, UK.Google Scholar
  49. Lim, K.Y., Skalicka, K., Koukalova, B., Volkov, R.A., Matyasek, R., Hemleben, V., Leitch, A.R. and Kovarik, A. 2004. Dynamic changes in the distribution of a satellite homologous to intergenic 26–18S rDNA spacer in the evolution of Nicotiana. Genetics 166: 1935–1946.PubMedGoogle Scholar
  50. Macleod, D. and Bird, A. 1982. DNAase I sensitivity and methylation of active versus inactive rRNA genes in xenopus species hybrids. Cell 29: 211–218.PubMedGoogle Scholar
  51. McClintock, B. 1934. The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays.Z. Zellforsch. Mikrosk. Anat. 21: 294–328.Google Scholar
  52. Mishima, Y., Financsek, I., Kominami, R. and Muramatsu, M. 1982. Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal genes: identification of species-dependent initiation factor. Nucleic Acids Res. 10: 6659–6670.PubMedGoogle Scholar
  53. Moss, T. 1983. A transcription function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302: 223–228.PubMedGoogle Scholar
  54. Mougey, E.B., Pape, L.K. and Sollner-Webb, B. 1996. J. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription. Biol. Chem. 271: 27138–27145.Google Scholar
  55. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 437–497.Google Scholar
  56. Navashin, M. 1927. Changes in number and form of chromosomes as a result of hybridization. Z. Zellforsch. Mikrosk. Anat. 6: 195–223.Google Scholar
  57. Navashin, M. 1934. Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia 5: 169–203.Google Scholar
  58. Neves, N., Silva, M., Heslop-Harrison, J.S. and Viegas, W. 1997. Nucleolar dominance in triticales: control by unlinked genes. Chromosome Res. 5: 125–131.PubMedGoogle Scholar
  59. Nicoloff, H. 1979. Nucleolar dominance is observed in barley translocation lines with specifically reconstructed SAT chromosomes. Theor. Appl. Genet. 55: 247–251.Google Scholar
  60. Niu, X.P., Renshaw-Gegg, L., Miller, L. and Guiltinan, M.J. 1999. Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Plant Mol. Biol. 41: 1–13.PubMedGoogle Scholar
  61. Oberwalder, B., Rouss, B., Schilde-Rentschler, L., Hemleben, V. and Ninnemann, H. 1997. Asymmetric fusion between wild and cultivated species of potato (Solanum spp.) – detection of asymmetric hybrids and genome elimination. Theor. Appl. Genet. 94: 1104–1112.Google Scholar
  62. Osborn, T.C., Pires, J.C., Birchler, J.A., Auger, D.L., Chen, Z.J., Lee, H.S., Comai, L., Madlung, A., Doerge, R.W., Colot, V. and Martienssen, R.A. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19: 141–147.PubMedGoogle Scholar
  63. Papazova, N., Hvarleva, T., Atanassov, A. and Gecheff, K. 2001. The role of cytosine methylation for rRNA gene expression in reconstructed karyotypes of barley. Biotechnol. Equipment 15: 35–44.Google Scholar
  64. Pape, L.K., Windile, J.J., Mougey, E.B. and Sollner-Webb, B. 1989. The Xenopus ribosomal DNA 60-and 81-base-pair repeats are position-dependent enhancers that function at the establishment of the preinitiation complex: analysis in vivo and in an enhancer-responsive in vitro system. Mol. Cell Biol. 9: 5093–5104.PubMedGoogle Scholar
  65. Perry, K.L. and Palukaitis, P. 1990. Transcription of tomato ribosomal DNA and the organization of the intergenic spacer. Mol. Gen. Genet. 221: 102–112.Google Scholar
  66. Pikaard, C.S. 2000. Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol. Biol. 43: 163–177.PubMedGoogle Scholar
  67. Pikaard, C.S. and Reeder, R.H. 1988. Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers. Mol. Cell Biol. 8: 4282–4288.PubMedGoogle Scholar
  68. Reeder, R.H. 1985. Mechanisms of nucleolar dominance in animals and plants. J. Cell Biol. 101: 2013–2016.PubMedGoogle Scholar
  69. Riddle, N.C. and Birchler, J.A. 2003. Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet. 19: 597–600.PubMedGoogle Scholar
  70. Saez-Vasquez, J., Caparros-Ruiz, D., Barneche, F. and Echeverria, M. 2004. A plant snoRNP complex containing snoRNAs, fibrillarin, and nucleolin-like proteins is competent for both rRNA gene binding and pre-rRNA processing in vitro. Mol. Cell. Biol. 24: 7284–7297.PubMedGoogle Scholar
  71. Saez-Vasquez, J. and Pikaard, C.S. 1997. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc. Natl. Acad. Sci. USA 94: 11869–11874.PubMedGoogle Scholar
  72. Sambrook, J., Fritsch, E. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  73. Santoro, R., Li, J. and Grummt, I. 2002. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genet. 32: 393–396.PubMedGoogle Scholar
  74. Sardana, R., O'Dell, A. and Flavell, R. 1993. Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of rRNA genes and nucleolar expression in wheat. Mol. Gen. Genet. 236: 155–162.PubMedGoogle Scholar
  75. Schilde-Rentschler, L., Ruoss, B. and Ninnemann, H. 1993. Availability of new genetic resources from wild species for potato breeding. In: EAPR 12th Conference Trienniale, Paris, pp. 195–196.Google Scholar
  76. Schlo¨ gelhofer, P., Nizhynska, V., Feik, N., Chambon, C., Potuschak, T., Wanzenbock, E.M., Schweizer, D. and Bachmair, A. 2002. The upstream Sal repeat-containing segment of Arabidopsis thaliana ribosomal DNA intergenic region (IGR) enhances the activity of adjacent proteincoding genes. Plant Mol. Biol. 49: 655–667.PubMedGoogle Scholar
  77. Schmidt-Puchta, W., Gunther, I. and Sanger, H.L. 1989. Nucleotide sequence of the intergenic spacer (IGS) of the tomato ribosomal DNA. Plant Mol. Biol. 13: 251–253.PubMedGoogle Scholar
  78. Schubert, I. and Kunzel, C. 1990. Position-dependent NOR activity in barley. Chromosoma 99: 352–359.Google Scholar
  79. Schwarzacher, T. and Heslop-Harrison, P. 2000. Practical In Situ Hybridization. The Bath Press, Bath, UK.Google Scholar
  80. Schweizer, G., Borisjuk, N., Borisjuk, L., Stadler, M., Stelzer, T., Schilde, L. and Hemleben, V. 1993. Molecular analysis of highly repeated genome fractions in Solanum and their use as markers for the characterization of species and cultivar. Theor. Appl. Genet. 85: 801–808.Google Scholar
  81. Stelzer, T. 1996. Vorkommen repetitiver DNA-Elemente und detaillierte Genomanalyse von somatischen Hybriden aus intra-und interspezifischen, symmetrischen Fusionen der Gattung Solanum. Ph.D. Dissertation, Verlag Ulrich E. Grauer, Sturttgart, Germany.Google Scholar
  82. Song, K., Lu, P., Tang, K. and Osborn, T.C. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. 92: 7719–7723.PubMedGoogle Scholar
  83. Spooner, D.M., Anderson, G.J. and Jansen, R.K. 1993. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae).Am. J. Bot. 80: 676–688.Google Scholar
  84. Stupar, R.M., Song, J., Tek, A.L., Cheng, Z., Dong, F. and Jiang, J. 2002. Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162: 1435–1444.PubMedGoogle Scholar
  85. Tanksley, S.D., Ganal, M.W., Prince, J.P., De Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Ro¨ der, M.S., Wing, R.A., Wu, W. and Young, N.D. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.PubMedGoogle Scholar
  86. Torres-Ruiz, R.A. and Hemleben, V. 1994. Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol. Biol. 26: 1167–1179.PubMedGoogle Scholar
  87. Tremousaygue, D., Laudie, M., Grellet, F. and Delseny, M. 1992. The Brassica oleracea rDNA spacer revisited. Plant Mol. Biol. 18: 1013–1018.PubMedGoogle Scholar
  88. Vallejos, C.E., Tanksley, S.D. and Bernatzky, R. 1986. Localization in the tomato genome of DNA restriction fragments containing sequences homologous to the rRNA (45S), he major chlorophyll a/b binging polypeptide and the ribulosobisphosphate carboxylase genes. Genetics 112: 93–105.Google Scholar
  89. Viera, A., Mello-Sampayo, T. and Viegas, W.S. 1990a. Genetic control of 1R nucleolus organizer region in the presence of wheat genome. Genome 33: 713–718.Google Scholar
  90. Viera, A., Morais, L., Barao, A., Mello-Sampayo, T. and Viegas, W.S. 1990b. 1R chromosome nucleolus organizer region activation by 5-azacytidine in wheat · rye hybrids. Genome 33: 707–712.Google Scholar
  91. Visser, R., Hoekstra, R., Van der Leji, F., Witholt, B. and Feenstra, W. 1988. In situ hybridization to somatic metaphase chromosomes of potato. Theor. Appl. Genet. 76: 420–424.Google Scholar
  92. Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., Schweizer, D. and Hemleben, V. 1999. Elimination and rearrangement of parental rDNA in allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16: 311–320.PubMedGoogle Scholar
  93. Volkov, R.A., Zanke, C., Panchuk, I.I. and Hemleben, V. 2001. Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor. Appl. Genet. 103: 1273–1282.Google Scholar
  94. Volkov. R.A., Komarova, N.Y., Panchuk, I.I. and Hemleben, V. 2003a. Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum) Mol. Phylogenet. Evol. 29: 187–202.PubMedGoogle Scholar
  95. Volkov, R.A., Panchuk, I.I. and Scho¨ ffl, F. 2003b. Heat-stressdependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 391: 2343–2349.Google Scholar
  96. Volkov, R.A., Medina, F.J., Zentgraf, U. and Hemleben V. 2004. Molecular cell biology: Organization and molecular evolution of rDNA, nucleolar dominance, and nucleolus structure. In: Progress in Botany 65. Springer-Verlag, Berlin–Heidelberg, pp. 106–146.Google Scholar
  97. Wallace, H. and Langbridge, W.H.R. 1971. Differential amphiplasty and the control of ribosomal RNA synthesis.Heredity 27: 1–13.Google Scholar
  98. Wanzenbock, E.M., Schofer, C, Schweizer, D. and Bachmair, A. 1997. Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J. 11: 1007–1016.PubMedGoogle Scholar
  99. Wendel, J.F., Schnabel, A. and Seelanan, T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).Proc. Natl. Acad. Sci. 92: 280–284.PubMedGoogle Scholar
  100. Xu, J. and Earle, E.D. 1996. High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma 104: 545–550.PubMedGoogle Scholar
  101. Yeh, B.P. and Peloquin, S.J. 1965. The nucleolus associated chromosome of Solanum species and hybrids. Am. J. Bot. 52: 626.Google Scholar
  102. Zentgraf, U. and Hemleben, V. 1992. Complex formation of nuclear proteins with the spacer of Cucumis sativus ribosomal DNA. Nucl. Acids Res. 20: 3685–3691.PubMedGoogle Scholar
  103. Zentgraf, U. and Hemleben, V. 1994. Structural organization and regulation of transcription by RNA polymerase I of plant nuclear ribosomal RNA genes. In: L. Nover (Ed.), Plant Promoters and Transcription Factors. Results and Problems in Cell Differentiation 20, Springer-Verlag, Berlin– Heidelberg, pp. 3–24.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Nataliya Y. Komarova
    • 1
  • Thomas Grabe
    • 1
  • Dirk J. Huigen
    • 2
  • Vera Hemleben
    • 2
  • Roman A. Volkov
    • 2
  1. 1.Department of General Genetics, Center of Plant Molecular Biology (ZMBP)University of TübingenTübingenGermany
  2. 2.The Graduate School of Experimental Plant Sciences, Department of Plant BreedingWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations