Advertisement

Plant Molecular Biology

, Volume 56, Issue 4, pp 563–571 | Cite as

Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic disease (CMD)

  • M. Fregene
  • H. Matsumura
  • A. Akano
  • A. Dixon
  • R. Terauchi
Article

Abstract

Cassava mosaic disease (CMD) is a viral disease of the important tropical staple crop cassava (Manihot esculenta) and preferred management involves use of host–plant resistance. The best available resistance is controlled by a single dominant gene. Serial analysis of gene expression (SAGE) was used to analyze the gene expression pattern in a bulk of 40 each of CMD resistant and susceptible genotypes drawn from a gene mapping progeny. Messenger RNA used for the SAGE analysis came from plants that were exposed to heavy disease pressure over a period of 2 years in the field. A total of 12,786 tags were studied, divided into 5733 and 7053 tags from the resistant and susceptible genotypes, respectively. Tag annotation was by PCR amplification using the tag sequence as sense primer and 4000 cassava ESTs generated from the bulk of CMD resistant genotypes. Annotation of more than 30 differentially expressed tags revealed several genes expressed during systemic acquired resistance (SAR) in plants and other genes involved in cell-to-cell and cytoplasm-to-nucleus virus trafficking. Differential expression of the most abundantly expressed tag, corresponding to a beta-tubulin gene, was confirmed by Northern Analysis. RFLP analysis of the tags in the parents and bulks of the CMD mapping progeny revealed only one tag, a WRKY transcription factor, associated with the region bearing the dominant CMD gene.

Keywords

candidate genes cassava mosaic disease host–plant resistance serial analysis of gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akano, A., Barrera, E., Mba, C., Dixon, A.G.O., Fregene, M. 2002Genetic mapping of a dominant gene conferring resistance to the cassava mosaic diseaseTheor. and Appl. Genet.105521525CrossRefGoogle Scholar
  2. Altschul, S.F., Madden, T.L., Shaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res.2533893402CrossRefPubMedGoogle Scholar
  3. Blackwell, J.L., Brinton, M.A. 1997Translation elongation factor-1 alpha interacts with the 3′stem-loop region of West Nile virus genomic RNAVirology7164336444Google Scholar
  4. Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P., Heinlein, M. 2000Function of microtubules in intercellular transport of plant virus RNACell Biol2826832Google Scholar
  5. CIAT.2001 Assessing and utilizing agrobiodiversity through biotechnology Annual Report 2001. Project SB-02. Centro Internacional de Agricultura Tropical Cali, ColombiaGoogle Scholar
  6. Cimarelli, A., Luban, J. 1999Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyproteinJ Virol.7353885401PubMedGoogle Scholar
  7. de Matos, A.P., Carvalho, Z.G. 1993African swine fever virus interaction with microtubulesBiol. Cell78229234CrossRefPubMedGoogle Scholar
  8. Fauquet, C., Fargette, D. 1990African cassava mosaic virusEtiology, epidemiology and control. Plant Disease74404411Google Scholar
  9. Fraser, R.S.S. 1986Genes for resistance to plant virusesCRC Crit. Rev. Plant Sci.3257294Google Scholar
  10. Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., Tohme, J., Bonierbale, M. 1997A molecular genetic map of cassava (Manihot esculenta Crantz)Theor. Appl. Genet.95431441CrossRefGoogle Scholar
  11. Fregene, M., Bernal, A., Duque, M., Dixon, A., Tohme, J. 2000AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD)Theor. Appl. Genet.100678685Google Scholar
  12. Hahn, S.K, Terry, E.R., Leuschner, K. 1980Breeding cassava for resistance to cassava mosaic diseaseEuphytica29673683Google Scholar
  13. D.L.Jennings1976 Breeding for Resistance to African Cassava Mosaic African cassava mosaic Report of an interdisciplinary Workshop held at Muguga, Kenya. IDRC-071e, pp. 39–44Google Scholar
  14. N.T.Keen,A.Bent,B. Staskawicz 1993 In: I Chet (Ed.) Plant Disease Resistance Genes: Interactions with Pathogens and Their Improved Utilization to Control Plant Diseases Wiley/Liss New York, pp. 65–88Google Scholar
  15. Kohm, B.A., Goulden, M.G., Gilbert, J.E., Kavanagh, T.A., Baulcombe, D.C. 1993A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplastsPlant Cell5913920PubMedGoogle Scholar
  16. Matsumura, H., Shizuko, N., Terauchi, R. 1999Transcript profiling in rice (Oryza sativa L.) seedling using serial analysis of gene expressionPlant J.20719726PubMedGoogle Scholar
  17. McLean, B.G., Zupan, J., Zambryski, P.C. 1995Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cellsPlant Cell7210114PubMedGoogle Scholar
  18. Ogbe, F.O., Atiri, G.I., Dixon, A.G.O. and Thottappilly G. 2003. Symptom severity of cassava mosaic disease in relation to concentration of African cassava mosaic virus in different cassava genotypes Plant Pathology 52: 84–91.Google Scholar
  19. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., Vogelstein , B. 1997A model for P53-induced ApoptosisNature389300305PubMedGoogle Scholar
  20. P.G. Rajendran,S.G.Nair,A.Easwari,K.Vasudevan,M.T.Sreekumari,1993Cassava breeding, agronomy research and technology transfer in AsiaIn: R.H. Howeler (Ed.) Proceeding of the Fourth Regional Workshop Held in TrivandrumKerala, India. pp. 84–96Google Scholar
  21. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989Molecular Cloning, a Laboratory ManualCold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  22. Storey, H.H., Nichols, R.F.W. 1938Studies on the mosaic disease of cassavaAnn. Appl. Biol.25709806Google Scholar
  23. Swanson, M.M., Harrison, B.D. 1994Properties, relationships and distribution of cassava mosaic geminivirusesTrop. Sci.341525Google Scholar
  24. Truant, R. and Cullen, B.R. 1999. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin.Google Scholar
  25. Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, B., Basrai, M.A., Bassett, D.E., Hieter, P., Vogelstein, J., Kinzler, K.W. 1997Characterization of yeast transcriptomesCell88243251PubMedGoogle Scholar
  26. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., Baker, B.J. 1994The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptorCell7811011115PubMedGoogle Scholar
  27. Zhang, L., Zhou, W., Velculescu, V.E., Kern, S.E., Hruban, R. H., Hamilton, S. R., Vogelstein, B., Kinzler, K.W. 1997Gene expression profiles in normal and cancer cellsScience27612681272PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Fregene
    • 1
  • H. Matsumura
    • 2
  • A. Akano
    • 1
  • A. Dixon
    • 3
  • R. Terauchi
    • 2
  1. 1.Centro International de Agricultura Tropical (CIAT)CaliColombia
  2. 2.Iwate Biotechnology Research Center (IBRC)Narita, Kitakami, IwateJapan
  3. 3.International Institute of Tropical Agriculture (IITA)IbadanNigeria

Personalised recommendations