Advertisement

Plant Molecular Biology

, Volume 56, Issue 2, pp 225–239 | Cite as

Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces

  • Satoru Fujimoto
  • Sachihiro Matsunaga
  • Masataka Yonemura
  • Susumu Uchiyama
  • Takachika Azuma
  • Kiichi Fukui
Article

Abstract

We identified a novel nucleoplasm localized protein in Arabidopsis called AT-hook motif nuclear localized protein 1 (AHL1), which was isolated by visual screening of transformants using random GFP::cDNA fusions. AHL1 contains an AT-hook motif and unknown conserved PPC (plants and prokaryotes conserved) domain that includes a hydrophobic region. Approximately 30 paralogues were identified in the Arabidopsis genome. Proteins with PPC-like domains are found in Bacteria, Archaea and the plant kingdom, but in Bacteria and Archaea the PPC containing proteins of do not have an AT-hook motif. Thus, the PPC domain is evolutionary conserved and has a new function such as AT-rich DNA binding. AHL1 was mainly localized in the nucleoplasm, but little in the nucleolus and heterochromatic region, and was concentrated in the boundary region between euchromatin and heterochromatin. Biochemically, AHL1 was also found in the nuclear matrix fraction. In the M phase, AHL1 was localized on the chromosomal surface. The AT-hook motif was essential for matrix attachment region (MAR) binding, and the hydrophobic region of the PPC was indispensable for nuclear localization. Our results suggest that AHL1 is a novel plant MAR binding protein, which is related to the positioning of chromatin fibers in the nucleus by the presence of an AT-hook motif and PPC domain. In addition, AHL1 is located on the surface of chromosomes during mitosis.

chromosomal surface GFP matrix-attachment region nuclear matrix visual screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, Y., Kas, E. and Laemmli, U. K. 1989. Preferential, cooperative binding of DNA topoisomerase II to scaffold associated regions. EMBO J. 8: 3997-4006.PubMedGoogle Scholar
  2. Agard, D. A., Hiraoka, Y., Shaw, P. and Sedat, J. W. 1989. Fluorescence microscopy in three dimensions. Methods Cell Biol. 30: 353-377.PubMedGoogle Scholar
  3. An, G. 1987. Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol. 153: 292-305.Google Scholar
  4. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.Google Scholar
  5. Aravind, L. and Landsman, D. 1998. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26: 4413-4421.PubMedGoogle Scholar
  6. Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N. and Yokota, A. 2003. A functional link between RuBisCOlike protein of Bacillus and photosynthetic RuBisCO. Science 302: 286-290.PubMedGoogle Scholar
  7. Berezney, R. and Coffey, D. S. 1974. Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60: 1410-1417.PubMedGoogle Scholar
  8. Calikowski, T. T., Meulia, T. and Meier, I. 2003. A proteomic study of the Arabidopsis nuclear matrix. J. Cell. Biochem. 90: 361-378.PubMedGoogle Scholar
  9. Chaly, N., Bladon, T., Setterfield, G., Little, J. E., Kaplan, J. G. and Brown, D. L. 1984. Changes in distribution of nuclear matrix antigens during the mitotic cell cycle. J. Cell Biol. 99: 661-671.PubMedGoogle Scholar
  10. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen, J. 1996. Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325-330.PubMedGoogle Scholar
  11. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.PubMedGoogle Scholar
  12. Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. and Somerville, C. R. 2000. Random GFP:: cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97: 3718-3723.PubMedGoogle Scholar
  13. Dickinson, L. A., Joh, T., Kohwi, Y. and Kohwi-Shigematsu, T. 1992. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70: 631-645.PubMedGoogle Scholar
  14. Fackelmayer, F. O., Dahm, K., Renz, A., Ramsperger, U. and Richter, A. 1994. Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur. J. Biochem. 221: 749-757.PubMedGoogle Scholar
  15. Gasser, S. M. and Laemmli, U. K. 1987. Improved methods for the isolation of individual and clustered mitotic chromosomes. Exp. Cell Res. 173: 85-98.PubMedGoogle Scholar
  16. Gautier, T., Masson, C., Quintana, C., Arnoult, J. and Hernandez-Verdun, D. 1992a. The ultrastructure of the chromosome periphery in human cell lines. An in situ study using cryomethods in electron microscopy. Chromosoma 101: 502-510.PubMedGoogle Scholar
  17. Gautier, T., Robert-Nicoud, M., Guilly, M. N. and HernandezVerdun, D. 1992b. Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J. Cell Sci. 102 (Pt 4): 729-737.PubMedGoogle Scholar
  18. Gerace, L. and Blobel, G. 1980. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19: 277-287.PubMedGoogle Scholar
  19. Gindullis, F. and Meier, I. 1999. Matrix attachment region binding protein MFP1 is localized in discrete domains at the nuclear envelope. Plant Cell 11: 1117-1128.PubMedGoogle Scholar
  20. Gindullis, F., Peffer, N. J. and Meier, I. 1999. MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. Plant Cell 11: 1755-1768.PubMedGoogle Scholar
  21. Glass, J. R. and Gerace, L. 1990. Lamins A and C bind and assemble at the surface of mitotic chromosomes. J. Cell Biol. 111: 1047-1057.PubMedGoogle Scholar
  22. Hatton, D. and Gray, J. C. 1999. Two MAR DNA-binding proteins of the pea nuclear matrix identify a new class of DNA-binding proteins. Plant J. 18: 417-429.PubMedGoogle Scholar
  23. He, D. C., Nickerson, J. A. and Penman, S. 1990. Core laments of the nuclear matrix. J. Cell Biol. 110: 569-580.PubMedGoogle Scholar
  24. Hernandez-Verdun, D. and Gautier, T. 1994. The chromosome periphery during mitosis. Bioessays 16: 179-185.PubMedGoogle Scholar
  25. Hood, E. E., Helmer, G. L., Fraley, R. T. and Chilton, M. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of TDNA. J. Bacteriol. 168: 1291-1301.PubMedGoogle Scholar
  26. Houben, A., Demidov, D., Gernand, D., Meister, A., Leach, C. R. and Schubert, I. 2003. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J. 33: 967-973.PubMedGoogle Scholar
  27. Huth, J. R., Bewley, C. A., Nissen, M. S., Evans, J. N., Reeves, R., Gronenborn, A. M. and Clore, G. M. 1997. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat. Struct. Biol. 4: 657-665.PubMedGoogle Scholar
  28. Izaurralde, E., Kas, E. and Laemmli, U. K. 1989. Highly preferential nucleation of histone H1 assembly on scaffold associated regions. J. Mol. Biol. 210: 573-585.PubMedGoogle Scholar
  29. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A. and Ecker, J. R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441.PubMedGoogle Scholar
  30. Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C. J., Ohtsuki, K., Shishiki, T., Otomo, Y., Murakami, K., Iida, Y., Sugano, S., Fujimura, T., Suzuki, Y., Tsunoda, Y., Kurosaki, T., Kodama, T., Masuda, H., Kobayashi, M., Xie, Q., Lu, M., Narikawa, R., Sugiyama, A., Mizuno, K., Yokomizo, S., Niikura, J., Ikeda, R., Ishibiki, J., Kawamata, M., Yoshimura, A., Miura, J., Kusumegi, T., Oka, M., Ryu, R., Ueda, M., Matsubara, K., Kawai, J., Carninci, P., Adachi, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashidume, W., Hayatsu, N., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kondo, S., Konno, H., Miyazaki, A., Osato, N., Ota, Y., Saito, R., Sasaki, D., Sato, K., Shibata, K., Shinagawa, A., Shiraki, T., Yoshino, M. and Hayashizaki, Y. 2003. Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice. Science 301: 376-379.PubMedGoogle Scholar
  31. Lude ´rus, M. E., de Graaf, A., Mattia, E., den Blaauwen, J. L., Grande, M. A., de Jong, L. and van Driel, R. 1992. Binding of matrix attachment regions to lamin B1. Cell 70: 949-959.PubMedGoogle Scholar
  32. Lude ´rus, M. E., den Blaauwen, J. L., de Smit, O. J., Compton, D. A. and van Driel, R. 1994. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol. Cell Biol. 14: 6297-6305.PubMedGoogle Scholar
  33. Masuda, K., Xu, Z. J., Takahashi, S., Ito, A., Ono, M., Nomura, K. and Inoue, M. 1997. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. Exp. Cell Res. 232: 173-181.PubMedGoogle Scholar
  34. McKeon, F. D., Tuffanelli, D. L., Kobayashi, S. and Kirschner, M. W. 1984. The redistribution of a conserved nuclear envelope protein during the cell cycle suggests a pathway for chromosome condensation. Cell 36: 83-92.PubMedGoogle Scholar
  35. McNulty, A. K. and Saunders, M. J. 1992 Purification and immunological detection of pea nuclear intermediate laments: evidence for plant nuclear lamins. J. Cell Sci. 103: 407-414.PubMedGoogle Scholar
  36. Medina, F. J., Cerdido, A. and Fernandez-Gomez, M. E. 1995. Components of the nucleolar processing complex (PrerRNA, brillarin, and nucleolin) colocalize during mitosis and are incorporated to daughter cell nucleoli. Exp. Cell Res. 221: 111-125.PubMedGoogle Scholar
  37. Meier, I., Phelan, T., Gruissem, W., Spiker, S. and Schneider, D. 1996. MFP1, a novel plant lament-like protein with a. nity for matrix attachment region DNA. Plant Cell 8: 2105-2115.PubMedGoogle Scholar
  38. Merdes, A., Ramyar, K., Vechio, J. D. and Cleveland, D. W. 1996. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87: 447-458.PubMedGoogle Scholar
  39. Mimori, T., Hardin, J. A. and Steitz, J. A. 1986. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J. Biol. Chem. 261: 2274-2278.PubMedGoogle Scholar
  40. Minguez, A. and Moreno Diaz de la Espina, S. 1993. Immunological characterization of lamins in the nuclear matrix of onion cells. J. Cell Sci. 106: 431-439.PubMedGoogle Scholar
  41. Mirkovitch, J., Mirault, M. E. and Laemmli, U. K. 1984. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: 223-232.PubMedGoogle Scholar
  42. Morisawa, G., Han-Yama, A., Moda, I., Tamai, A., Iwabuchi, M. and Meshi, T. 2000. AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region. Plant Cell 12: 1903-1916.PubMedGoogle Scholar
  43. Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.PubMedGoogle Scholar
  44. Olins, A. L. and Olins, D. E. 1974. Spheroid chromatin units (v bodies). Science 183: 330-332.PubMedGoogle Scholar
  45. Penman, S. 1995. Rethinking cell structure. Proc. Natl. Acad. Sci. USA 92: 5251-5257.PubMedGoogle Scholar
  46. Pienta, K. J., Getzenberg, R. H. and Coffey, D. S. 1991. Cell structure and DNA organization. Crit. Rev. Eukaryot. Gene Expr. 1: 355-385.PubMedGoogle Scholar
  47. Reeves, R. and Nissen, M. S. 1990. The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265: 8573-8582.PubMedGoogle Scholar
  48. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  49. Shi, L. J., Ni, Z. M., Zhao, S., Wang, G. and Yang, Y. 1987. Involvement of a nucleolar component, perichromonucleolin, in the condensation and decondensation of chromosomes. Proc. Natl. Acad. Sci. USA 84: 7953-7956.PubMedGoogle Scholar
  50. Schubert, I., Dolezel, J., Houben, A., Scerthan, H. and Wanner, G. 1993. Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102: 96-101.Google Scholar
  51. Strahl, B. D. and Allis, C. D. 2000. The language of covalent histone modifications. Nature 403: 41-45.PubMedGoogle Scholar
  52. Sumner, A. T. 1996. The distribution of topoisomerase II on mammalian chromosomes. Chromosome Res. 4: 5-14.PubMedGoogle Scholar
  53. Swedlow, J. R., Sedat, J. W. and Agard, D. A. 1993. Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell 73: 97-108.PubMedGoogle Scholar
  54. Tsutsui, K., Tsutsui, K., Okada, S., Watarai, S., Seki, S., Yasuda, T. and Shohmori, T. 1993. Identi cation and characterization of a nuclear scaffold protein that binds the matrix attachment region DNA. J. Biol. Chem. 268: 12886-12894.PubMedGoogle Scholar
  55. van Drunen, C. M., Oosterling, R. W., Keultjes, G. M., Weisbeek, P. J., van Driel, R. and Smeekens, S. C. M. 1997. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Res. 25: 3904-3911.PubMedGoogle Scholar
  56. van Holde, K. and Zlatanova, J. 1995. Chromatin higher order structure: chasing a mirage? J. Biol. Chem. 270: 8373-8376.PubMedGoogle Scholar
  57. Verheijen, R., Kuijpers, H. J., van Driel, R., Beck, J. L., van Dierendonck, J. H., Brakenho., G. J. and Ramaekers, F. C. 1989. Ki-67 detects a nuclear matrix-associated proliferationrelated antigen. II. Localization in mitotic cells and association with chromosomes. J. Cell Sci. 92 (Pt 4): 531-540.PubMedGoogle Scholar
  58. von Kries, J. P., Buck, F. and Stratling, W. H. 1994. Chicken MAR binding protein p120 is identical to human heterogeneous nuclear ribonucleoprotein (hnRNP)U. Nucleic Acids Res. 22: 1215-1220.PubMedGoogle Scholar
  59. Wako, T., Fukuda, M., Furushima-Shimogawara, R., Belyaev, N. D. and Fukui, K. 2002. Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol. Biol. 49: 645-653.PubMedGoogle Scholar
  60. Xia, Y., Nikolau, B. J. and Schnable, P. S. 1997. Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol. 115: 925-937.PubMedGoogle Scholar
  61. Yu, W. and Moreno Diaz de la Espina, S. 1999. The plant nucleoskeleton: ultrastructural organization and identi cation of NuMA homologues in the nuclear matrix and mitotic spindle of plant cells. Exp. Cell Res. 246: 516-526.PubMedGoogle Scholar
  62. Zhao, K., Kas, E., Gonzalez, E. and Laemmli, U. K. 1993. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 12: 3237-3247PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Satoru Fujimoto
    • 1
  • Sachihiro Matsunaga
    • 1
  • Masataka Yonemura
    • 1
  • Susumu Uchiyama
    • 1
  • Takachika Azuma
    • 1
  • Kiichi Fukui
    • 1
  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations