Advertisement

Plant Molecular Biology

, Volume 56, Issue 1, pp 15–27 | Cite as

Bax-induced cell death of Arabidopsisis meditated through reactive oxygen-dependent and -independent processes

  • Dongwon Baek
  • Jaesung Nam
  • Yoon Duck koo
  • Doh Hoon kim
  • Jiyoung Lee
  • Jae Cheol jeong
  • Sang-soo Kwak
  • Woo Sik chung
  • Chae Oh lim
  • Jeong Dong bahk
  • Jong Chan hong
  • Sang Yeol lee
  • Maki Kawai-yamada
  • Hirofumi Uchimiya
  • Dae-jin Yun
Article

Abstract

An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.

apoptosis Arabidopsisprotoplasts Bax cell death mitochondria reactive oxygen species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovitch, R.B., Kim, Y.J., Chen, S., Dickman, M.B. and Martin, G.B. 2003. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 20: 60–69.Google Scholar
  2. Belzacq, A.S., Vieira, H.L., Kroemer, G. and Brenner, C. 2002. The adenine nucleotide translocator in apoptosis. Biochimie 84: 167–176.Google Scholar
  3. Bethke, P.C., Lonsdale, J.E., Fath, A. and Jones, R.L. 1999. Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11: 1033–1045.Google Scholar
  4. Byczkowski, J.Z. and Gessner, T. 1988. Biological role of superoxide ion radical. Int. J. Biochem. 20: 569–580.Google Scholar
  5. Dangl, J.L., Dietrich, R.A. and Thomas, H. 2000. Senescence and programmed cell death. In: B.B. Buchanan, W. Gruissem and R.L. Jones (Eds.), Biochemistry and Molecular Biology of Plants. Amer. Soci. Plant Physiol., MD. pp. 1044–1100.Google Scholar
  6. Davis, S.J. and Vierstra, R.D. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36: 521–528.Google Scholar
  7. del Pozo, O. and Lam, E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8: 1129–1132.Google Scholar
  8. Demaurex, N. and Distelhorst, C. 2003. Apoptosis-the calcium connection. Science 300: 65–67.Google Scholar
  9. Elbaz, M., Avni, A. and Weil, M. 2002. Constitutive caspaselike machinery executes programmed cell death in plant cells. Cell Death Differ. 9: 726–733.Google Scholar
  10. Fath, A., Bethke, P., Beligni, V. and Jones, R. 2002. Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot. 53: 1273–1282.Google Scholar
  11. Filonova, L.H., Bozhkov, P.V., Brukhin, V.B., Daniel, G., Zhivotovsky, B. and von Arnold, S. 2000. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Sci. 113: 4399–4411.Google Scholar
  12. Fukamatsu, Y., Yabe, N. and Hasunuma, K. 2003. Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol. 44: 982–989.Google Scholar
  13. Green, D.R. and Reed, J.C. (1998) Mitochondria and apoptosis. Science 281: 1309–1312.Google Scholar
  14. Greenhalf, W., Stephan, C. and Chaudhuri, B. 1996. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharo myces cerevisiae. FEBS Lett. 380: 169–175.Google Scholar
  15. Gross, A., McDonnell, J.M. and Korsmeyer, S.J. 1999. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13: 1899–1911.Google Scholar
  16. Hanada, M., Aimé-Sempé, C., Sato, T. and Reed, J.C. 1995. Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem. 270: 11962–11969.Google Scholar
  17. Harris, M.H., Vander Heiden, M.G., Kron, S.J. and Thompson, C.B. 2000. Role of oxidative phosphorylation in Bax toxicity. Mol. Cell. Biol. 20: 3590–3596.Google Scholar
  18. Heikal, A.A., Hess, S.T., Baird, G.S., Tsien, R.Y. and Webb, Y.Y. 2000. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc. Natl. Acad. Sci. USA 97: 11996–12001.Google Scholar
  19. Hockenbery, D.M., Oltvai, Z.N., Yin, X.-M., Milliman, C.L. and Korsmeyer, S.J. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251.Google Scholar
  20. Houot, V., Etienne, P., Petitot, A.-S., Barbier, S., Blein, J.-P. and Suty, L. 2001. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dosedepend manner. J. Exp. Bot. 52: 1721–1730.Google Scholar
  21. Hûckelhoven, R., Dechert, C. and Kogel, K.H. 2003. Overexpression of barley BAX inhibitor 1 induces breakdown of Mlo-mediated penetration resistance to Blumeria graminis. Proc. Natl. Acad. Sci. USA 100: 5555–5560.Google Scholar
  22. Huh, G.-H., Damsz, B., Matsumoto, T.K., Reddy, M.P., Rus, A.M., Ibeas, J., Narasimhan, M.L., Bressan, R.A. and Hasegawa, P.M. 2002. Salt causes ion disequilibriuminduced programmed cell death in yeast and plants. Plant J. 29: 649–659.Google Scholar
  23. Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharm. 57: 231–245.Google Scholar
  24. Jacobson, M.D. and Raff, M.C. 1995. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374: 814–816.Google Scholar
  25. Jin, J.B., Bae, H., Kim, S.J., Jin, Y.H., Goh, C.H., Kim, D.H., Lee, Y.J., Tse, Y.C., Jiang, L. and Hwang, I. 2003. The Arabidopsis dynamin-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesis. Plant Cell 15: 2357–2369.Google Scholar
  26. Jin, J.B., Kim, Y.A., Kim, S.J., Lee, S.H., Kim, D.H., Cheong, G.W. and Hwang, I. 2001. A new dynamin-like protein, ADL6, is involved in trafficking from the trans-golgi network to the central vacuole in Arabidopsis. Plant Cell 13: 1511–1525.Google Scholar
  27. Jones, A. 2000. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 5: 225–230.Google Scholar
  28. Joo, J.H., Bae, Y.S. and Lee, J.S. 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126: 1055–1060.Google Scholar
  29. Jurgensmeier, J.M., Krajewski, S., Armstrong, R.C., Wilson, G.M., Oltersdorf, T., Fritz, L.C., Reed, J.C. and Ottilie, S. 1997. Bax-and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 8: 325–339.Google Scholar
  30. Kannan, K. and Jain, S.K. 2000. Oxidative stress and apoptosis. Pathophysiol. 7: 153–167.Google Scholar
  31. Kawai, M., Pan, L., Reed, J.C. and Uchimiya, H. 1999. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464: 143–147.Google Scholar
  32. Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A. and Uchimiya, H. 2001. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc. Natl. Acad. Sci. USA 98: 12295–12300.Google Scholar
  33. Kim, D.H., Eu, Y.J., Yoo, C.M., Kim, Y.W., Pih, K.T., Jin, J.B., Kim, S.J., Stenmark, H. and Hwang, I. 2001. Trafficking of phosphatidylinositol 3-phosphate from the trans-golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13: 287–301.Google Scholar
  34. Kroemer, G. and Reed, J.C. 2000. Mitochondrial control of cell death. Nature Med. 6: 513–519.Google Scholar
  35. Lacomme, C. and Cruz, S.S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96: 7956–7961.Google Scholar
  36. Lam, E., Kato, N. and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848–853.Google Scholar
  37. Levine, A., Belenghi, B., Damari-Weisler, H. and Granot, D. 2001. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J. Biol. Chem. 276: 46284–46289.Google Scholar
  38. Madeo, F., Engelhardt, S., Herker, E., Lehmann, N., Maldener, C., Proksch, A., Wissing, S. and Fröhlich, K.-U. 2002. Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr. Genet. 41: 208–216.Google Scholar
  39. Madeo, F., Fröhlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H. and Fröhlich, K.-U. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757–767.Google Scholar
  40. Matsumura, H., Nirasawa, S., Kiba, A., Urasaki, N., Saitoh, H., Ito, M., Kawai-Yamada, M., Uchimiya, H. and Terauchi, R. 2003. Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J. 33: 425–434.Google Scholar
  41. Mitsuhara, I., Malik, K.A., Miura, M. and Ohashi, Y. 1999. Animal cell death suppressors Bcl-XL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 9: 775–778.Google Scholar
  42. Moon, H., Baek, D., Lee, B., Prasad, D.T., Lee, S.Y., Cho, M.J., Lim, C.O., Choi, M.S., Bahk, J., Kim, M.O., Hong, J.C. and Yun, D.-J. 2002. Soybean ascorbate peroxidase suppresses bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem. Biophys. Res. Commun. 290: 457–462.Google Scholar
  43. Moon, H., Lee, B., Choi, G., Shin, D.J., Prasad, D.T., Lee, O., Kwak, S.-S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S., Cho, M.J., Lim, C.O. and Yun, D.-J. 2003. Nucleoside diphosphate kinase 2 interacts with two oxidative stress activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100: 358–363.Google Scholar
  44. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.Google Scholar
  45. Niwa, Y., Hirano, T., Yoshimoto, K., Shimizu, M. and Kobayashi, H. 1999. Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J. 18: 455–463.Google Scholar
  46. Punj, V. and Chakrabarty, A.M. 2003. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol. 5: 225–231.Google Scholar
  47. Qiao, J., Mitsuhara, I., Yazaki, Y., Sakano, K., Gotoh, Y., Miura, M. and Ohashi, Y. 2002. Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells-their possible contribution through improved function of organella. Plant Cell Physiol. 43: 992–1005.Google Scholar
  48. Salvioli, S., Bonafe, M., Capri, M., Monti, D. and Franceschi, C. 2001. Mitochondria, aging and longevity-a new perspective. FEBS Lett. 492: 9–13.Google Scholar
  49. Sanchez, P., Zabala, M.T. and Grant, M. 2000. AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge. Plant J. 21: 393–399.Google Scholar
  50. Schulz, J.B., Weller, M. and Klockgether, T. 1996. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J. Neurosci. 16: 4696–4706.Google Scholar
  51. Scorrano, L. and Korsmeyer, S.J. 2003. Mechanism of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun. 304: 437–444.Google Scholar
  52. Solomon, M., Belenghi, B., Delledonne, M. and Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor genes in programmed cell death in plants. Plant Cell 11: 431–443.Google Scholar
  53. Steller, H. 1995. Mechanisms and genes of cellular suicide. Science 267: 1445–1449.Google Scholar
  54. Tsujimoto, Y. and Shimizu, S. 2002. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84: 187–193.Google Scholar
  55. Uren, A.G., O'Rourke, K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E.V. and Dixit, V.M. 2000. Identifi-cation of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961–967.Google Scholar
  56. Willis, S., Day, C.L., Hind, M.G. and Huang, D.C.S. 2003. The Bcl-2-regulated apoptotic pathway. J. Cell Sci. 116: 4053–4056.Google Scholar
  57. Xu, Q. and Reed, J.C. 1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1: 337–346.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Dongwon Baek
    • 1
  • Jaesung Nam
    • 2
  • Yoon Duck koo
    • 1
  • Doh Hoon kim
    • 2
  • Jiyoung Lee
    • 1
  • Jae Cheol jeong
    • 1
  • Sang-soo Kwak
    • 3
  • Woo Sik chung
    • 1
  • Chae Oh lim
    • 1
  • Jeong Dong bahk
    • 1
  • Jong Chan hong
    • 1
  • Sang Yeol lee
    • 1
  • Maki Kawai-yamada
    • 4
  • Hirofumi Uchimiya
    • 4
  • Dae-jin Yun
    • 1
  1. 1.Environmental Biotechnology National Core Research Center, and Division of Applied Life Science (BK21 program)Graduate School of Gyeongsang National UniversityJinjuKorea
  2. 2.Faculty of Plant BiotechnologyDong-A UniversityBusanKorea
  3. 3.Laboratory of Environmental BiotechnologyKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
  4. 4.Institute of Molecular and Cellular BiosciencesUniversity of Tokyo, TokyoBunkyo-kuJapan

Personalised recommendations