Advertisement

Plant Molecular Biology

, Volume 56, Issue 1, pp 125–132 | Cite as

The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment

  • Steve V. Pollock
  • Davey L. Prout
  • Ashley C. Godfrey
  • Stephane D. Lemaire
  • James V. Moroney
Article

Abstract

The unicellular green alga Chlamydomonas reinhardtii acclimates to a low-CO2 environment by modifying the expression of a number of messages. Many of the genes that increase in abundance during acclimation to low−2 are under the control of the putative transcription factor Cia5. C. reinhardtii mutants null for cia5 do not express several of the known low−2 inducible genes and do not grow in a low−2 environment. Two of the genes under the control of Cia5, Ccp1 and Ccp2, encode polypeptides that are localized to the chloroplast envelope and have a high degree of similarity to members of the mitochondrial carrier family of proteins. Since their discovery, Ccp1/2 have been candidates for bicarbonate uptake proteins of the chloroplast envelope membrane. In this report, RNA interference was successful in dramatically decreasing the abundance of the mRNAs for Ccp1 and Ccp2. The abundance of the Ccp1 and Ccp2 proteins were also reduced in the RNAi strains. The RNAi strains grew slower than WT in a low−2 environment, but did not exhibit a mutant carbon concentrating phenotype as determined by the cells’ apparent affinity for dissolved inorganic carbon. Possible explanations of this RNAi phenotype are discussed.

bicarbonate transport carbon concentrating mechanism Chlamydomonas reinhardtii RNAi silencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burow, M. D., Chen, Z.-Y., Mouton, T. M. and Moroney, J. V. 1996. Isolation of cDNA clones induced upon transfer of Chlamydomonas reinhardtii cells to low CO2. Plant Mol. Biol. 31: 443–448.Google Scholar
  2. Chen, Z.-Y., Lavigne, L. L., Mason, C. B. and Moroney, J. V. 1997. Cloning and overexpression of two cDNAs encoding the low CO2-inducible chloroplast envelope protein LIP-36 from Chlamydomonas reinhardtii. Plant Physiol. 114: 265–273.Google Scholar
  3. Fukuzawa, H., Ishizaki, K., Miura, K., Matsueda, S., Inoue, T., Kucho, K. and Ohyama, K. 1998. Isolation and characterization of high CO2 requiring mutants from Chlamydomonas reinhardtii by gene tagging. Can. J. Bot. 76: 1092–1097.Google Scholar
  4. Fukuzawa, H., Miura, K., Ishizaki, K., Kucho, K., Saito, T., Kohinata, T., and Ohyama, K. 2001. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2. Proc. Natl. Acad. Sci. USA 98: 5347–5352.Google Scholar
  5. Geraghty, A. M., Anderson, J. C. and Spalding, M. H., 1990. A 36 kilodalton limiting-CO2 induced polypeptide of Chlamydomonas is distinct from the 37 kilodalton periplasmic carbonic anhydrase. Plant Physiol. 93: 116–121.Google Scholar
  6. Im, C. S., Zhang, Z., Shrager, J., Chang, C. W. and Grossman, A. R. 2003. Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genome-wide approaches. Photosyn. Res. 75: 111–125.Google Scholar
  7. Koblenz, B., Schoppmeier, J., Grunow, A. and Lechtreck, K. F. 2003. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J. Cell Sci. 116: 2635–2646.Google Scholar
  8. Lawand, S., Dorne A. J., Long D., Coupland, G., Mache, R. and Carol, P. 2002. Arabidopsis A BOUT DE SOUFFLE, which is homologous with mammalian carnitine acyl carrier, is required for postembryonic growth in the light. Plant Cell. 14: 2161–2173.Google Scholar
  9. Marek, L. F. and Splading, M. H. 1991. Changes in photorespiratiory enzyme activity in response to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol. 97: 420–425.Google Scholar
  10. Moroney, J. V., Husic H. D., Tolbert, N. E., Kitayama, K., Manuel, L. J. and Togasaki, R. K. 1989. Isolation and characterization of a mutant of Chlamydomonas reinhardtii deficient in the CO2 concentrating mechanism. Plant Physiol. 89: 897–903.Google Scholar
  11. Moroney, J. V. and Mason, C. B. 1991. The role of the chloroplast in Ci uptake in Chlamydomonas reinhardtii. Can. J. Bot. 69: 1017–1024.Google Scholar
  12. Moroney, J. V. and Somanchi, A. 1999. How algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation. Plant Physiol. 119: 9–16.Google Scholar
  13. Omata, T., Takahashi, Y., Yamaguchi, O. and Nishimura, T. 2002. Structure, function and regulation of the cyanobacterial high affinity bicarbonate transporter, Bct1. Funct. Plant Biol. 29: 151–159.Google Scholar
  14. Pollock, S. V. and Colman, B. 2001. The inhibition of the carbon concentrating mechanism of the green alga Chlorella saccharophila by acetazolamide. Physiol. Plant 111: 527–532.Google Scholar
  15. Pollock, S. V., Colombo, S. L., Prout, D. L. Jr., Godfrey, A. C. and Moroney, J. V. 2003. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low CO2 atmosphere. Plant Physiol. 133: 1854–1861.Google Scholar
  16. Ramazanov, Z., Mason, C. B., Geraghty, A. M., Spalding, M. H. and Moroney, J. V. 1993. The low CO2-inducible 36 kDa protein is localized to the chloroplast envelope of Chlamydomonas reinhardtii. Plant Physiol. 101: 1195–1199.Google Scholar
  17. Rawat, M. and Moroney, J. V. 1995. Regulation of carbonic anhydrase and ribulose-15-bisphosphate carboxylase/oxygenase activase by light and low CO2 in Chlamydomonas reinhardtii. Plant Physiol. 109: 937–944.Google Scholar
  18. Shibata, M., Ohkawa, H., Katoh, H., Shimoyama, M. and Ogawa, T. 2002. Two CO2 uptake systems: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC6803. Funct. Plant Biol. 29: 123–129.Google Scholar
  19. Shimogawara, K., Fujiwara, S., Grossman, A. and Usuda, H. 1998 High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148: 1821–1828.Google Scholar
  20. Sineshchekov, O. A., Jung, K. H. and Spudich, J. L. 2002. Two rhodopsins mediate phototaxis to low and high intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 99:8689–8694.Google Scholar
  21. Somanchi, A., Handley, E. R. and Moroney, J. V. 1998. Chlamydomonas reinhardtii cDNAs upregulated in low CO2 conditions: expression and analysis. Can. J. Bot. 76: 1003–1009.Google Scholar
  22. Spalding M. H. and Jeffrey M. 1989. Membrane-associated polypeptides induced in Chlamydomonas by limiting CO2 concentrations. Plant Physiol. 89: 133–137.Google Scholar
  23. Spalding, M. H., Winder, T. L., Anderson, JC, Geraghty, A. M. and Marek, L. F. 1991. Changes in protein and gene expression during induction of the CO2-concentrating mechanism in wild-type and mutant Chlamydomonas. Can. J. Bot. 69: 1008–1016.Google Scholar
  24. Sueoka, N. 1960. Mitotic replication of deoxyribonucleic acids in Chlamydomonas reinharditii. Proc. Natl. Acad. Sci. USA 46: 83–91.Google Scholar
  25. Walker, J. E. and Runswick, M. J. 1993. The mitochondrial transport protein superfamily. J. Bioenerg. Biomemb. 25: 435–446.Google Scholar
  26. Xiang, Y. B., Zhang, J. and Weeks, D. P. 2001. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 98: 5341–5346.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Steve V. Pollock
    • 1
    • 2
  • Davey L. Prout
    • 1
  • Ashley C. Godfrey
    • 1
  • Stephane D. Lemaire
    • 3
  • James V. Moroney
    • 1
  1. 1.Department of Biological ScienceLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA
  3. 3.Institut de Biotechnologie des Plantes, UMR 8618 CNRSUniversité Paris-SudOrsay CedexFrance

Personalised recommendations