Plant Molecular Biology

, Volume 56, Issue 1, pp 29–55 | Cite as

Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray

  • Seiji Takahashi
  • Motoaki Seki
  • Junko Ishida
  • Masakazu Satou
  • Tetsuya Sakurai
  • Mari Narusaka
  • Asako Kamiya
  • Maiko Nakajima
  • Akiko Enju
  • Kenji Akiyama
  • Kazuko Yamaguchi-Shinozaki
  • Kazuo Shinozaki


Transcriptional regulation in response to hyperosmotic, high-salinity and oxidative stress, and abscisic acid (ABA) treatment in Arabidopsis suspension-cultured cell line T87 was investigated with a cDNA microarray containing 7000 independent full-length Arabidopsis cDNAs. The transcripts of 102, 11, 84 and 73 genes were increased more than 5-fold within 5h after treatment with 0.5M mannitol, 0.1M NaCl, 50μM ABA and 10mM H2O2, respectively. On the other hand, the transcripts of 44, 57, 25 and 34 genes were down-regulated to less than one-third within 5h after treatment with 0.5M mannitol, 0.1M NaCl, 50μM ABA and 10mM H2O2, respectively. Venn diagram analysis revealed 11 genes were induced significantly by mannitol, NaCl, and ABA, indicating crosstalk among these signaling pathways. Comparison of the genes induced by each stress revealed that 32%, 17% and 33% of mannitol-, NaCl- and ABA-inducible genes were also induced by H2O2, indicating the crosstalk between the signaling pathways for osmotic stress and oxidative stress. Although the expression profiles revealed that the T87 cells had most of the regulatory systems seen in Arabidopsis seedlings, the T87 cells did not have one of ABA-dependent signaling pathways.

abiotic stress Arabidopsis thaliana cDNA microarray full-length cDNA T87 cell culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

TABLE_S1.XLS (254 kb)
Table S1 (XLS 255 KB)
TABLE_S2.XLS (102 kb)
Table S2 (XLS 103 KB)
TABLE_S3.XLS (162 kb)
Table S3 (XLS 163 KB)
TABLE_S4.XLS (100 kb)
Table S4 (XLS 101 KB)
TABLE_S5-1.XLS (38 kb)
Table S5-1 (XLS 39 KB)
TABLE_S5-2.XLS (74 kb)
Table S5-2 (XLS 74 KB)
TABLE_S6-1.XLS (28 kb)
Table S6-1 (XLS 29 KB)
TABLE_S6-2.XLS (96 kb)
Table S6-2 (XLS 97 KB)
TABLE_S7-1.XLS (13 kb)
Table S7-1 (XLS 13 KB)
TABLE_S7-2.XLS (58 kb)
Table S7-2 (XLS 58 KB)
TABLE_S8-1.XLS (22 kb)
Table S8-1 (XLS 22 KB)
TABLE_S8-2.XLS (57 kb)
Table S8-2 (XLS 57 KB)


  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acidregulated gene expression. Plant Cell 9: 1859–1868.PubMedCrossRefGoogle Scholar
  2. Abe, H., Urao, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcription activators in abscisic acid signaling. Plant Cell 15: 63–78.PubMedCrossRefGoogle Scholar
  3. Aharoni, A. and Vorst, O. 2002. DNA microarrays for functional plant genomics. Plant Mol. Biol. 48: 99–118.PubMedCrossRefGoogle Scholar
  4. Albrecht, V., Ritz, O., Linder, S., Harter, K. and Kudla, J. 2001. The NAF domain defines a novel protein–protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051–1063.PubMedCrossRefGoogle Scholar
  5. Axelos, M., Curie, C., Mazzolini, L., Bardet, C. and Lescure, B. 1992. A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol. Biochem. 30: 123–128.Google Scholar
  6. Banzet, N., Richaud, C., Deveaux, Y., Kazmaier, M., Gagnon, J. and Triantaphylides, C. 1998. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519–527.PubMedCrossRefGoogle Scholar
  7. Bohnert, H. J., Nelson, D. E. and Jensen, R. G. 1995. Adaptations to environmental stresses. Plant Cell 7: 1099–1111.PubMedCrossRefGoogle Scholar
  8. Bonetta, D. and McCourt, P. 1998. Genetic analysis of ABA signal transduction pathways. Trends Plant Sci. 3: 231–235.CrossRefGoogle Scholar
  9. Bray, E. A. 1997. Plant responses to water deficit. Trends Plant Sci. 2: 48–54.CrossRefGoogle Scholar
  10. Chen, W., Chao, G. and Singh, K. B. 1996. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF-and OBP1-binding sites. Plant J. 10: 955–966.PubMedCrossRefGoogle Scholar
  11. Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. 2000. ABFs, a family of ABA-responsive element binding factors J. Biol. Chem. 275: 1723–1730.Google Scholar
  12. Cutler, A. J. and Krochko, J. E. 1999. Formation and breakdown of ABA. Trends Plant Sci. 4: 472–478.PubMedCrossRefGoogle Scholar
  13. Desikan, R., A-H-Mackerness, S., Hancock, J. T. and Neill, S. J. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172.PubMedCrossRefGoogle Scholar
  14. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199–206.PubMedCrossRefGoogle Scholar
  15. Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K. and Somssich, I. E. 1999. Early nuclear events in plant defence signaling: rapid gene activation by WRKY transcription factors. EMBO J. 18: 4689–4699.PubMedCrossRefGoogle Scholar
  16. Finkelstei, D., Ewing, R., Gollub, J., Sterky, F., Cherry, J. M. and Somerville, S. 2002. Microarray data quality analysis: lessons from the AFGC project. Arabidopsis Functional Genomics Consortium. Plant Mol. Biol. 48: 119–131.CrossRefGoogle Scholar
  17. Fowler, S. and Thomashow, M. F. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675–1690.PubMedCrossRefGoogle Scholar
  18. Grill, E. and Himmelbach, A. 1998. ABA signal transduction. Curr. Opin. Plant Biol. 1: 412–418.PubMedCrossRefGoogle Scholar
  19. Guan, L. and Scandalios, J. G. 1993. Characterization of the catalase antioxidant defense gene Cat1 of maize, and its developmentally regulated expression in transgenic tobacco. Plant J. 3: 527–536.PubMedCrossRefGoogle Scholar
  20. Guan, L. M., Zhao, J. and Scandalios, J. G. 2000. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: 53 H2O2 is the likely intermediary signaling molecule for the response. Plant J. 22: 87–95.PubMedCrossRefGoogle Scholar
  21. Harper, J. F., Manney, L., DeWitt, N. D., Yoo, M. H. and Sussman, M. R. 1990. The Arabidopsis thaliana plasma membrane H(+)-ATPase multigene family. Genomic sequence and expression of a third isoform. J. Biol. Chem. 265: 13601–13608.PubMedGoogle Scholar
  22. Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.CrossRefGoogle Scholar
  23. Hazen, S. P., Wu, Y. and Kreps, J. A. 2003. Gene expression profiling of plant responses to abiotic stress. Funct. Integr. Genomics 3: 105–111.PubMedCrossRefGoogle Scholar
  24. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297–300.PubMedCrossRefGoogle Scholar
  25. Himmelbach, A., Item, M. and Grill, E. 1998. Signaling of abscisic acid to regulate plant growth. Philos. Trans. R. Soc. Lond. R. Biol. Sci. 353: 1439–1444.CrossRefGoogle Scholar
  26. Ingram, J. and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.PubMedCrossRefGoogle Scholar
  27. Jouanneau, J.-P. and Pe´ aud-Lenoe¨ l, C. 1967. Croissance et synthese des prote´ ines de suspensions cellulaires de tabac sensibles ala kine´ tine. Physiol. Plant. 20: 834–850.CrossRefGoogle Scholar
  28. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D. and Bohnert, H. J. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889–905.PubMedCrossRefGoogle Scholar
  29. Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol. Biol. 25: 791–798.PubMedCrossRefGoogle Scholar
  30. Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X. and Harper, J. F. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130: 2129–2141.PubMedCrossRefGoogle Scholar
  31. Kurkela, S. and Borg-Franck, M. 1990. Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol. Biol. 15: 137–144.PubMedCrossRefGoogle Scholar
  32. Kurkela, S. and Borg-Franck, M. 1992. Structure and expression of kin2, one of two cold-and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19: 689–692.PubMedCrossRefGoogle Scholar
  33. Kwak, J. M., Mori, I. C., Pei, Z. M., Leonhardt, N., Torres, M. A., Dangl, J. L., Bloom, R. E., Bodde, S., Jones, J. D. and Schroeder, J. I. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623–2633.PubMedCrossRefGoogle Scholar
  34. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16: 223–323.PubMedCrossRefGoogle Scholar
  35. Lee, Y. H. and Chun, J. Y. 1998. A new homeodomain-leucine zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid treatment. Plant Mol. Biol. 37: 377–384.PubMedCrossRefGoogle Scholar
  36. Leung, J., Bouvier-Durand, M., Morris, P. C., Guerrier, D., Chefdor, F. and Giraudat, J. 1994. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448–1452.PubMedCrossRefGoogle Scholar
  37. Lippuner, V., Cyert, M. S. and Gasser, C. S. 1996. Two class of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J. Biol. Chem. 271: 12859–12866.PubMedCrossRefGoogle Scholar
  38. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperatureresponsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.PubMedCrossRefGoogle Scholar
  39. Medford, J. I., Elmer, J. S. and Klee, H. J. 1991. Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell 3: 359–370.PubMedCrossRefGoogle Scholar
  40. Meyer, K., Leube, M. P. and Grill, E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452–455.PubMedCrossRefGoogle Scholar
  41. Murata, Y., Pei, Z. M., Mori, I. C. and Schroeder, J. I. 2000. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. Plant Cell 13: 2513–2523.CrossRefGoogle Scholar
  42. Neill, S. J., Desikan, R., Clarke and Hancock, J. T. 2002b. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5: 388–395.Google Scholar
  43. Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D. and Hancock, J. T. 2002a. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot. 53: 1237–1247.PubMedCrossRefGoogle Scholar
  44. Okamuro, J. K., Caster, B., Villarroel, V., VanMontagu, M. and Jofuku, K. D. 1997. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 94: 7076–7081.PubMedCrossRefGoogle Scholar
  45. Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G. J., Grill, E. and Schroeder, J. I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells.Nature 406: 731–734.PubMedCrossRefGoogle Scholar
  46. Price, A. H. and Hendry, G. A. F. 1991. Iron-catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ. 14: 477–484.CrossRefGoogle Scholar
  47. Reymond, P., Weber, H., Damond, M. and Farmer, E. E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–720.PubMedCrossRefGoogle Scholar
  48. Rushmore, T. H., Morton, M. R. and Pickett, C. B. 1991. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266: 11632–11639.PubMedGoogle Scholar
  49. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and colinducible gene expression. Biochem. Biophys. Res. Commun. 290: 998–1009.PubMedCrossRefGoogle Scholar
  50. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  51. Sarafian, V., Kim, Y., Poole, R. J. and Rea, P. A. 1992. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 89: 1775–1779.PubMedCrossRefGoogle Scholar
  52. Seki, M., Carninci, P., Nishiyama, Y., Hayashizaki, Y. and Shinozaki, K. 1998. High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J. 15: 707–720.PubMedCrossRefGoogle Scholar
  53. Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002c. Monitoring the expression pattern of ca. 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2: 282–291.PubMedCrossRefGoogle Scholar
  54. Seki, M., Kamei, A., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 14: 194–199.PubMedCrossRefGoogle Scholar
  55. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses using full-length cDNA microarray. Plant Cell 13: 61–72.PubMedCrossRefGoogle Scholar
  56. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002b. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279–292.PubMedCrossRefGoogle Scholar
  57. Seki, M., Narusaka, M., Kamiya, A., Ishida, J., Satou, M., Sakurai, T., Nakajima, M., Enju, A., Akiyama, K., Oono, Y., Muramatsu, M., Hayashizaki, Y., Kawai, J., Carninci, P., Itoh, M., Ishii, Y., Arakawa, T., Shibata, K., Shinagawa, A. and Shinozaki, K. 2002a. Functional annotation of a fulllength Arabidopsis cDNA collection. Science 296: 141–145.PubMedCrossRefGoogle Scholar
  58. Shinozaki, K. and Yamaguchi-Shinozaki, K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327–334.PubMedCrossRefGoogle Scholar
  59. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217–223.PubMedGoogle Scholar
  60. Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410–417.PubMedCrossRefGoogle Scholar
  61. Taji T., Ohsumi C., Iuchi S., Seki M., Kasuga M., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2002. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417–426.PubMedCrossRefGoogle Scholar
  62. Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2001. Hyperosmotic stress induces a rapid and transient increase in inositol 1, 4, 5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol. 42: 214–222.PubMedCrossRefGoogle Scholar
  63. Takahashi, S., Katagiri, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2000. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol. 41: 898–903.PubMedCrossRefGoogle Scholar
  64. Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T. J. 2001. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol. 127: 1030–1043.PubMedCrossRefGoogle Scholar
  65. Thomashow, M. F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599.PubMedCrossRefGoogle Scholar
  66. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic aciddependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632–11637.PubMedCrossRefGoogle Scholar
  67. Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539.PubMedCrossRefGoogle Scholar
  68. Xu, W., Chambbell, P., Vargheese, A. K. and Braam, J. 1996. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J. 9: 879–889.PubMedCrossRefGoogle Scholar
  69. Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., Southwick, A. M., Wu, H. C., Kim, C., Nguyen, M., Pham, P., Cheuk, R., Karlin-Newmann, G., Liu, S. X., Lam, B., Sakano, H., Wu, T., Yu, G., Miranda, M., Quach, H. L., Tripp, M., Chang, C. H., Lee, J. M., Toriumi, M., Chan, M. M., Tang, C. C., Onodera, C. S., Deng, J. M., Akiyama, K., Ansari, Y., Arakawa, T., Banh, J., Banno, F., Bowser, L., Brooks, S., Carninci, P., Chao, Q., Choy, N., Enju, A., Goldsmith, A. D., Gurjal, M., Hansen, N. F., Hayashizaki, Y., Johnson-Hopson, C., Hsuan, V. W., Iida, K., Karnes, M., Khan, S., Koesema, E., Ishida, J., Jiang, P. X., Jones, T., Kawai, J., Kamiya, A., Meyers, C., Nakajima, M., Narusaka, M., Seki, M., Sakurai, T., Satou, M., Tamse, R., Vaysberg, M., Wallender, E. K., Wong, C., Yamamura, Y., Yuan, S., Shinozaki, K., Davis, R. W., Theologis, A. and Ecker, J. R. 2003. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842–846.PubMedCrossRefGoogle Scholar
  70. Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. and Shinozaki, K. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33: 217–224.Google Scholar
  71. Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.PubMedCrossRefGoogle Scholar
  72. Yuasa, T., Ichimura, K., Mizoguchi, T. and Shinozaki, K. 2001. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 42: 1012–1016.PubMedCrossRefGoogle Scholar
  73. Zhu, J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Seiji Takahashi
    • 1
  • Motoaki Seki
    • 1
    • 2
  • Junko Ishida
    • 2
  • Masakazu Satou
    • 2
    • 3
  • Tetsuya Sakurai
    • 2
    • 3
  • Mari Narusaka
    • 2
  • Asako Kamiya
    • 2
  • Maiko Nakajima
    • 2
  • Akiko Enju
    • 2
  • Kenji Akiyama
    • 2
    • 3
  • Kazuko Yamaguchi-Shinozaki
    • 4
  • Kazuo Shinozaki
    • 1
    • 2
  1. 1.Laboratory of Plant Molecular BiologyRIKEN Tsukuba InstituteTsukubaJapan
  2. 2.Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences CenterRIKEN Yokohama InstituteYokohamaJapan
  3. 3.Genomic Knowledge Base Research Team, Bioinformatics GroupRIKEN Genomic Science CentreYokohamaJapan
  4. 4.Biological Resources Division, Japan International Research Center for Agricultural Sciences, Ministry of AgricultureForestry, and FisheriesIbarakiJapan

Personalised recommendations