Plant Molecular Biology

, Volume 55, Issue 5, pp 679–686 | Cite as

A mutation in the Cap Binding Protein 20 gene confers drought

  • István Papp
  • Luis mur
  • ágnes Dalmadi
  • Sándor Dulai
  • Csaba Koncz


In a genetic screen for Arabidopsismutants displaying pleiotropic alterations in vegetative development and stress responses we have identified a T-DNA insertion mutation in the Cap Binding Protein 20 (CBP20) gene, that encodes the 20kDa subunit of the nuclear mRNA cap binding complex (nCBC). Plants homozygous for the recessive cbp20 mutation show mild developmental abnormalities, such as serrated rosette leaves, delayed development and slightly reduced stature. Loss of the cbp20 function also confers hypersensitivity to abscisic acid during germination, significant reduction of stomatal conductance and greatly enhanced tolerance to drought. Expression of the wild type cDNA by CaMV35S promoter provides full genetic complementation of the pleiotropic cbp20phenotype. Phenotypic characteristics of the cbp20 mutant are very similar to those of recently described abh1mutant that is defective in the 80kDa subunit of nCBC. Our data thus confirm that both genes are dedicated to the same function. CBP20 provides a new target for breeding efforts that aim at the improvement of drought tolerance in plants. Our results also show that screening for pleiotropic phenotypes in mutant plant populations may be a fruitful strategy to isolate genes for agronomically important traits.

abscisic acid Arabidopsis cap binding protein drought tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. and Go¨ rlach, J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13: 1499–1510.Google Scholar
  2. Clark, T.A., Sugnet, C.W. and Ares, M. 2002. Genomwide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296: 907–910.Google Scholar
  3. Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.Google Scholar
  4. Cohen, A., Moses, M.S., Plant, A ´.L. and Bray, E.A. 1999. Multiple mechanisms control the expression of abscisic acid (ABA)-requiring genes in tomato plants exposed to soil water deficit. Plant Cell Environ. 22: 989–998.Google Scholar
  5. Colot, H.V., Stutz, F. and Rosbash, M. 1996. The yeast splicing factor MUD13p is a commitment complex component and corresponds to CBP20, the small subunit of the nuclear capbinding complex. Genes Dev. 10: 1699–1708.Google Scholar
  6. Das, B., Butler, J.S. and Sherman, F. 2003. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol. Cell. Biol. 23: 5502–5515.Google Scholar
  7. Fan J., Yang, X., Wang, W., Wood III, W.H., Becker, K.G. and Gorospe, M. 2002. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl Acad. Sci. USA 99: 10611–10616.Google Scholar
  8. Fedoroff, N.V. 2002. RNA-binding proteins in plants: the tip of an iceberg? Curr. Opin. Plant Biol. 5: 452–459.Google Scholar
  9. Flaherty, S., Fortes, P., Izaurralde, E., Mattaj, I.W. and Gilmartin, G.M. 1997. Participation of the nuclear cap binding complex in pre-mRNA 30 processing. Proc. Natl Acad. Sci. USA 94: 11893–11898.Google Scholar
  10. Fortes, P., Kufel, J., Fornerod, M., Polycarpou-Schwarz, M., Lafontaine, D., Tollerwey, D. and Mattaj, I.W. 1999. Genetic and physical interactions involving the yeast nuclear cap-binding complex. Mol. Cell. Biol. 19: 6543–6553.Google Scholar
  11. Hugouvieux, V., Kwak, J.M. and Schroeder, J.I. 2001. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106: 477–487.Google Scholar
  12. Hugouvieux, V., Murata, Y., Young, J.J., Kwak, J.M., Mackesy, D.Z. and Schroeder, J.I. 2002. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1. Plant Physiol. 130: 1276–1287.Google Scholar
  13. Izaurralde, E., Lewis, J., Gamberi, C., Jarmolowski, A., McGuigan, C. and Mattaj, I.W. 1995. A cap-binding protein complex mediating U snRNA export. Nature 376: 709–712.Google Scholar
  14. Izaurralde, E., Lewis, J., McGuigan, C., Jankowska, M., Darzynkiewicz, E. and Mattaj, I.W. 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78: 657–668.Google Scholar
  15. Kataoka, N., Ohno, M., Kangawa, K., Tokoro, Y. and Shimura, Y. 1994. Cloning of complementary DNA encoding an 80 kilodalton nuclear cap binding protein. Nucleic Acids Res. 22: 3861–3865.Google Scholar
  16. Kmieciak, M., Simpson, C.G., Lewandowska, D., Brown, J.W.S. and Jarmolowski, A. 2002. Cloning and characterization of two subunits of Arabidopsis thaliana nuclear capbinding complex. Gene 283: 171–183.Google Scholar
  17. Koncz, C., Martini, N., Szabados, L., Hrouda, M., Bachmair, A. and Schell, J. 1994. Specialized vectors for gene tagging and expression studies. In: S. Gelvin and B. Schilperoort (Eds.) ant Molecular Biology Manual wer Academic, Dordrecht, B2: pp. 1–22.Google Scholar
  18. Koncz, C., Mayerhofer, R., Koncz-Ka´ lma´ n, Z., Nawrath, C., Reiss, B., Re´ dei, G.P. and Schell, J. 1990. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 9: 1337–1346.Google Scholar
  19. Lewis, J.D. and Izaurralde, E. 1997. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem. 247: 461–469.Google Scholar
  20. Lewis, J.D., Goerlich, D. and Mattaj, I.W. 1996. A yeast cap binding protein complex (yCBC) acts at an early step in premRNA splicing. Nucleic Acids Res. 24: 332–3336.Google Scholar
  21. Liu, J.-H. and Hill, R.D. 1995. Post-transcriptional regulation of bifunctional a-amylase/subtilisin inhibitor expression in barley embryos by abscisic acid. Plant Mol. Biol. 29: 1087–1091.Google Scholar
  22. Lu, C. and Fedoroff, N. 2000. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12: 2351–2366.Google Scholar
  23. McKendrick, L., Thompson, E., Ferreira, J., Morley, S.J. and Lewis, J.D. 2001. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap. Mol. Cell. Biol. 21: 3632–3641.Google Scholar
  24. Ríos, G., Lossow, A., Hertel, B., Breuer, F., Schaefer, S., Broich, M., Kleinow, T., Ja´ sik, J., Winter, J., Ferrando, A., Farra´ s, R., Panicot, M., Henriques, R., Mariaux, J.-B., Oberschall, A., Molna´ r, G., Berendzen, K., Shukla, V., Lafos, M., Koncz, Z., Re´ dei, G.P., Schell, J. and Koncz, C. 2002. Rapid identification of Arabidopsis insertion mutants by nonradioactive detection of T-DNA tagged genes. Plant J. 32: 243–253.Google Scholar
  25. Sambrook J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  26. Wilson, K.F. and Cerione, R.A. 2000. Signal transduction and post-transcriptional gene expression. Biol. Chem. 381: 357– 365.Google Scholar
  27. Wilson, K.F., Fortes, P., Singh, U.S., Ohno, M., Mattaj, I.W. and Cerione, R.A. 1999. The nuclear cap-binding complex is a novel target of growth factor receptor-coupled signal transduction. J. Biol. Chem. 274: 4166–4173.Google Scholar
  28. Wilson, K.F., Wu, W.J. and Cerione, R.A. 2000. Cdc42 stimulates RNA splicing via the S6K kinase and a novel S6 kinase target, the nuclear cap-binding complex. J. Biol. Chem. 275: 37307–37310.Google Scholar
  29. Winicov I. and Krishnan M. 1996. Transcriptional and posttranscriptional activation of genes in salt-tolerant alfalfa cells. Planta 200: 397–404.Google Scholar
  30. Xiong, L., Gong, Z., Rock, C.D., Subramanian, S., Guo, Y., Xu, W., Galbraith, D. and Zhu, J.K. 2001. Modulation of abscisic acid signal transduction and biosynthesis by an Smlike protein in Arabidopsis. Dev. Cell 1: 771–781.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • István Papp
    • 1
  • Luis mur
    • 2
  • ágnes Dalmadi
    • 1
  • Sándor Dulai
    • 3
  • Csaba Koncz
    • 4
  1. 1.Agricultural Biotechnology CenterSzent-Györgyi u. 4Hungary; Agricultural Biotechnology Center, Szent-Györgyi u. 4, Hungary
  2. 2.Institute of Biological SciencesUniversity of WalesUK
  3. 3.Department of Plant PhysiologyEszterházy CollegeHungary
  4. 4.Max-Planck-Institute for Plant Breeding ResearchGermany

Personalised recommendations