Plant Molecular Biology

, Volume 55, Issue 2, pp 253–262

Modulation of flowering responses in different Nicotiana varieties

  • Petr Smykal
  • Roland Gleissner
  • Laurent Corbesier
  • Klaus Apel
  • Siegbert Melzer
Article

Abstract

We have identified and characterized a FLOWERING PROMOTING FACTOR 1(FPF1) gene from tobacco (NtFPF1). Over-expression of NtFPF1 leads to early flowering in the day-neutral tobacco Nicotiana tabacum cv. Hicks, and under inductive photoperiods also in the short-day Nicotiana tabacum cv. Hicks Maryland Mammoth (MM) tobacco and the long-day plant Nicotiana sylvestris. N. sylvestris wild-type plants remained in the rosette stage and never flowered under non-inductive short-days, whereas 35S::NtFPF1 transgenic plants bolted but did not flower. However, if treated with gibberellins, transgenic N. sylvestrisplants flowered much faster under non-inductive short days than corresponding wild type plants, indicating an additive effect of gibberellins and the NtFPF1 protein in flowering time control. The day-neutral wild type cv. Hicks and the short-day cv. Hicks MM plants exhibit an initial rosette stage, both under short- and long-days. In the transgenic lines, this rosette stage was completely abolished. Wild-type plants of cv. Hicks MM never flowered under long days; however, all transgenic lines over-expressing NtFPF1 flowered under this otherwise non-inductive photoperiod.

Floral induction Flowering time FPF1 Gibberellin Tobacco 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promotor. Plant Cell 10: 791–800.CrossRefPubMedGoogle Scholar
  2. Blazquez, M.A. and Weigel, D. 2000. Integration of floral inductive signals in Arabidopsis. Nature 404: 889–892.CrossRefPubMedGoogle Scholar
  3. Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K. and Melzer, S. 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24: 591–599.CrossRefPubMedGoogle Scholar
  4. Chandler, J. and Dean, C. 1994. Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J. Exp. Bo. 45: 1279–1288.Google Scholar
  5. Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. 1990. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322.CrossRefPubMedGoogle Scholar
  6. Datla, R.S.S., Hammerlindl, J.K., Panchuk, B., Pelcher, L.E. and Keller, W. 1992. Modified binary plant transformation vectors with the wild-type gene encoding NPT II. Gene 211: 383–384.Google Scholar
  7. Eyal, Y., Sagee, O. and Fluhr, R. 1992. Dark-induced accumulation of a basic pathogenesis related (Pr-1) transcript and a light requirement for its induction by ethylene. Plant Mol. Biol. 19: 589–599.CrossRefPubMedGoogle Scholar
  8. Garner, W.W. and Allard, H.A. 1920. Effect of the relative length of the day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18: 553–606.Google Scholar
  9. Gebhardt, J.S. and McDaniel, C.N. 1991. Flowering response of day-neutral and short-day cultivars of Nicotiana tabacum L. interactions among roots, genotype, leaf ontogenetic position and growth conditions. Planta 185: 513–517.CrossRefGoogle Scholar
  10. Halliday, K.J., Thomas, B. and Whitelam, G.C. 1997. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 12: 1079–1090.CrossRefPubMedGoogle Scholar
  11. Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719–722.CrossRefPubMedGoogle Scholar
  12. Holtorf, S., Apel, K. and Bohlmann, H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29: 637–646.CrossRefPubMedGoogle Scholar
  13. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1234.Google Scholar
  14. Kania, T., Russenberger, D., Peng, S., Apel, K. and Melzer, S. 1997. FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327–1338.CrossRefPubMedGoogle Scholar
  15. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. 1999. Activation tagging of the floral inducer FT. Science 286: 1962–1965.CrossRefPubMedGoogle Scholar
  16. Kelly, A.J., Bonnlander, M.B. and Meeks-Wagner, D.R. 1995. NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7: 225–234.CrossRefPubMedGoogle Scholar
  17. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-dy1962.CrossRefPubMedGoogle Scholar
  18. Koorneef, M., Alonso-Blanco, C., Peeters, A.J.M. and Soppe, W. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345–370.CrossRefPubMedGoogle Scholar
  19. Lang, A. 1989. Nicotiana. In: A.H. Halevy (Ed.) Handbook of Flowering. vol. VI. CRC Press Inc., pp. 427–484.Google Scholar
  20. Langridge, J. 1957. Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180: 36–37.Google Scholar
  21. Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M. and Lee, I. 2000. The AGAMOUSLIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14: 2366–2376.CrossRefPubMedGoogle Scholar
  22. Mandel, T., Fleming, A.J., Krähenbühl, R. and Kuhlemeier, C. 1995. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model. Plant Mol. Biol. 29: 995–1004.CrossRefPubMedGoogle Scholar
  23. McDaniel, C.N. 1996. Developmental physiology of floral initiation in Nicotiana tabacum L. J. Exp. Bot. 47: 465–475.Google Scholar
  24. Melzer, S., Kampmann, G., Chandler, J. and Apel, K. 1999. FPF1 modulates the competence to flowering in Arabidopsis. Plant J. 18: 394–405.CrossRefGoogle Scholar
  25. Melzer, S., Majewski, D.M. and Apel, K. 1990. Early changes in gene expression during the transition from vegetative to generative growth in the long-day plant Sinapis alba. Plant Cell 2: 953–961.CrossRefPubMedGoogle Scholar
  26. Metzger, J.D. 1995. Hormones and reproductive development. In P.J. Davies, (Ed.), Plant Hormones. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 617–648.Google Scholar
  27. Montgomery, B.L., Franklin, K.A., Terry, M.J., Thomas, B., Jackson, S.D., Crepeau, M.W. and Lagarias, J.C. 2001. Biliverdin reductase-induced phytochrome chromophore deficiency in transgenic tobacco. Plant Physiol. 125: 266–277.CrossRefPubMedGoogle Scholar
  28. Moon, J., Suh, S-S., Lee, H., Choi, K-R., Hong, C.B., Paek, N.-C., Kim, S.-G. and Lee, I. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35: 613–623.CrossRefPubMedGoogle Scholar
  29. Mouradov, A., Cremer, F. and Coupland, G. 2002. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, S111-S130.Google Scholar
  30. Reed, J.W., Foster, K.R., Morgan, P.W. and Chory, J. 1996. Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol. 112: 337–342.CrossRefPubMedGoogle Scholar
  31. Reeves, P.H. and Coupland, G. 2001. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol. 126: 1085–1091.CrossRefPubMedGoogle Scholar
  32. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. 2000.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613–1616.CrossRefPubMedGoogle Scholar
  33. Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D. and Lohmann, J.U. 2003. Dissection of floral induction pathways using global expression analysis. Development 130: 6001–6012.CrossRefPubMedGoogle Scholar
  34. Simpson, G.G. and Dean, C. 2002. Arabidopsis, the rosetta stone of flowering time. Science 296: 285–289.CrossRefPubMedGoogle Scholar
  35. Thomas, B. and Vince-Prue, D. 1997. Photoperiodism in Plants. Academic Press, New York.Google Scholar
  36. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz E.M. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell, 69: 843–59.CrossRefPubMedGoogle Scholar
  37. Wilson, R.N., Heckman, J.W. and Somerville, C.R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403–408.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Petr Smykal
    • 1
  • Roland Gleissner
    • 1
  • Laurent Corbesier
    • 1
    • 2
  • Klaus Apel
    • 1
  • Siegbert Melzer
    • 1
    • 1
  1. 1.Swiss Federal Institute of Technology Zürich (ETH)Institute of Plant SciencesUniversitaetstrasse 2Switzerland; Department of Biotechnology, AGRITEC Plant Research Ltd., Zemedelska 2520/16 787 01, Czech Republic
  2. 2.Max-Planck-Institute for Plant Breeding ResearchKöln, Germany

Personalised recommendations