Plant Molecular Biology

, Volume 55, Issue 1, pp 45–59

Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins

  • Yingzhen Yang
  • Thomas Jack
Article
APETALA3 Arabidopsis dimerization flower development MADS PISTILLATA SEPALLATA ternary complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., de Pouplana, L.R., Martinez-Castilla, L. and Yanofsky, M.F. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 97: 5328–5333.Google Scholar
  2. Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52.Google Scholar
  3. Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20.Google Scholar
  4. Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G. and Jang, S.K. 1999. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40: 419–429.Google Scholar
  5. Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. and Sommer, H. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 16: 4330–4343.Google Scholar
  6. Egea-Cortines, M., Saedler, H. and Sommer, H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370–5379.Google Scholar
  7. Fan, H.-Y., Hu, Y., Tudor, M. and Ma, H. 1997. Specific interactions between K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12: 999–1010.Google Scholar
  8. Goto, K. and Meyerowitz, E.M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548–1560.Google Scholar
  9. Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A. and Irish, V.F. 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711–1721.Google Scholar
  10. Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.Google Scholar
  11. Jack, T., Brockman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.Google Scholar
  12. Jack, T., Fox, G.L. and Meyerowitz, E.M. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76: 703–716.Google Scholar
  13. James, P., Halladay, J. and Craig, E.A. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.Google Scholar
  14. Kang, H.G., Jang, S., Chung, J.E., Cho, Y.G. and An, G. 1997. Characterization of two rice MADS box genes that control flowering time. Mol. Cells 7: 559–566.Google Scholar
  15. Kieffer, M. and Davies, B. 2001. Developmental programmes in floral organ formation. Sem. Cell. Dev. Biol. 12: 373–380.Google Scholar
  16. Kohler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W. and Grossniklaus, U. (2003). The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17: 1540–1553.Google Scholar
  17. Krizek, B.A. and Meyerowitz, E.M. 1996a. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 112: 11–22.Google Scholar
  18. Krizek, B.A. and Meyerowitz, E.M. 1996b. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-idenity proteins. Proc. Natl. Acad. Sci. USA 93: 4063–4070.Google Scholar
  19. Lamb, R.S. and Irish, V.F. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. USA 100: 6558–6563.Google Scholar
  20. Lim, J., Moon, Y.H., An, G. and Jang, S.K. 2000. Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44: 513–527.Google Scholar
  21. Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. 1991. AGL1- AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5: 484–495.Google Scholar
  22. Mandel, M.A. and Yanofsky, M.F. 1998. The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex Plant Reprod. 11: 22–28.Google Scholar
  23. McGonigle, B., Bouhidel, K. and Irish, V.F. 1996. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev. 10: 1812–1821.Google Scholar
  24. Moon, Y.-H., Jung, J.-Y., Kang, H.-G. and An, G. 1999a. Identification of a rice APETALA3 homologue by yeast twohybrid screening. Plant Mol. Biol. 40: 167–177.Google Scholar
  25. Moon, Y.-W., Kang, H.-G., Jung, J.-Y., Jeon, J.-S., Sung, S.-K., and An, G. 1999b. Determination of the motif responsible for interaction between the rice APETALA1/ AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 120: 1193–1203.Google Scholar
  26. Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Kater, M.M., Davies, B., Angenent, G.C. and Colombo, L. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell 15: 1538–1551.Google Scholar
  27. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.Google Scholar
  28. Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. 2001a. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385–394.Google Scholar
  29. Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. and Yanofsky, M.F. 2006. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182–184.Google Scholar
  30. Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793–4798.Google Scholar
  31. Riechmann, J.L. and Meyerowitz, E.M. 1997a. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol. Biol. Cell 8: 1243–1259.Google Scholar
  32. Riechmann, J.L. and Meyerowitz, E.M. 1997b. MADS domain proteins in plant development. Biol. Chem. 378: 1079–1101.Google Scholar
  33. Tzeng, T.Y., Liu, H.-C. and Yang, C.-H. 2003. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J. Biol. Chem. 279: 10747–10755.Google Scholar
  34. Yang, Y., Fanning, L. and Jack, T. 2003a. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins APETALA3 and PISTILLATA. Plant J. 33: 47–59.Google Scholar
  35. Yang, Y., Xiang, H. and Jack, T. 2003b. pistillata-5, an Arabidopsis B class mutant with strong defects in petal, but not stamen development. Plant J. 33: 177–188.Google Scholar
  36. Zachgo, S., de Andrade Silva, E., Motte, P., Tröbner, W., Saedler, H. and Schwarz-Sommer, Z. 1995. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861–2875.Google Scholar
  37. Zhang, H. and Forde, B.G. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279: 407–409.Google Scholar
  38. Zik, M. and Irish, V.F. 2003. Flower development: Initiation, differentiation, and diversification. Ann. Rev. Cell. Dev. Biol. 19: 119–140.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yingzhen Yang
    • 1
    • 1
  • Thomas Jack
    • 1
  1. 1.Department of Biological SciencesDartmouth CollegeUSA

Personalised recommendations