Advertisement

Plant Molecular Biology

, Volume 55, Issue 1, pp 33–43 | Cite as

Tissue distribution of cholinesterases and anticholinesterases in native and transgenic tomato plants

  • Samuel Fletcher
  • Brian Geyer
  • Amy Smith
  • Tama Evron
  • Lokesh Joshi
  • Hermona Soreq
  • Tsafrir Mor
Article

Abstract

Acetylcholinesterase, a major component of the central and peripheral nervous systems, is ubiquitous among multicellular animals, where its main function is to terminate synaptic transmission by hydrolyzing the neurotransmitter, acetylcholine. However, previous reports describe cholinesterase activities in several plant species and we present data for its presence in tomato plants. Ectopic expression of a recombinant form of the human enzyme and the expression pattern of the transgene and the accumulation of its product in transgenic tomato plants are described. Levels of acetylcholinesterase activity in different tissues are closely effected by and can be separated from α-tomatine, an anticholinesterase steroidal glycoalkaloid. The recombinant enzyme can also be separated from the endogenous cholinesterase activity by its subcellular localization and distinct biochemical properties. Our results provide evidence for the co-existence in tomato plants of both acetylcholinesterase activity and a steroidal glycoalkaloid with anticholinesterase activity and suggest spatial mutual exclusivity of these antagonistic activities. Potential functions, including roles in plant-pathogen interactions are discussed.

Acetylcholinesterase Anticholinesterase Steroidal glycoalkaloids α-tomatine Transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashani, Y. 2000. Prospective of human butyrylcholinesterase as a detoxifying antidote and potential regulator of controlledrelease drugs. Drug Dev. Res. 50: 298–308.Google Scholar
  2. Birikh, K., Sklan, E., Shoham, S. and Soreq, H. 2003. Interaction of ''Readthrough'' acetylcholinesterase with RACK1 and PKCbII correlates with intensified fear induced conflict behavior. Proc. Natl Acad. Sci. USA 100: 283–288.Google Scholar
  3. Bouarab, K., Melton, R., Peart, J., Baulcombe, D. and Osbourn, A. 2002. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418: 889–892.Google Scholar
  4. Combes, D., Fedon, Y., Toutant, J.P. and Arpagaus, M. 2001. Acetylcholinesterase genes in the nematode Caenorhabditis elegans. Int. Rev. Cytol. 209: 207–239.Google Scholar
  5. Ehrlich, G., Ginzberg, D., Loewenstein, Y., Glick, D., Kerem, B., Ben-Ari, S., Zakut, H. and Soreq, H. 1994. Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics 22: 288–295.Google Scholar
  6. Fischer, R. and Emans, N. 2000. Molecular farming of pharmaceutical proteins. Transgenic Res. 9: 279–299.Google Scholar
  7. Fluck, R.A. and Jaffe, M.J. 1974a. Cholinesterases from plant tissues. III. Distribution and subcellular localization in Phaseolus aureus ROXB. Plant Physiol. 53: 752–758.Google Scholar
  8. Fluck, R.A. and Jaffe, M.J. 1974b. The distribution of Cholin Esterases in plant species. Phytochemistry 13: 2475–2480.Google Scholar
  9. Friedman, M. 2002. Tomato glycoalkaloids: role in the plant and in the diet. J. Agric. Food Chem. 50: 5751–5780.Google Scholar
  10. Friedman, M. and Levin, C.E. 1995. a-Tomatine content in tomato and tomato products determined byHPLCwith pulsed amperometric detection. J. Agric. Food Chem. 43: 1507–1511.Google Scholar
  11. Glick, D., Shapira, M. and Soreq, H.: Molecular neuorotoxicology implications of acetylcholinesterase inhibition. 2002. In: D.S., Lester, W. Slikker Jr. and P. Lazarovici. (Eds.), Siteselective Neurotoxicity, Taylor and Francis, London, pp. 116–133.Google Scholar
  12. Gupta, A. and Gupta, R. 1997. A survey of plants for reference of cholinesterase activity. Phytochemistry 46: 827–831.Google Scholar
  13. Gupta, A., Vijayaraghavan, M.R. and Gupta, R. 1998. The presence of cholinesterase in marine algae. Phytochemistry 49: 1875–1877.Google Scholar
  14. Hall, C.B. 1994. Prospects for a respiratory synctial vaccine. Science 265: 1393–1394.Google Scholar
  15. Hartmann, E. and Gupta, R. 1989. Acetylcholine As a Signaling System in Plants. In: W.F. Boss and D.J. Morre (Eds.), Second Messengers in Plant Growth and Development, Alan R. Liss Inc., New York, pp. 257–288.Google Scholar
  16. Henriksen, P., Carmichael, W.W., An, J. and Moestrup, O. 1997. Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of cyanobacteria/blue-green algae from Danish lakes and in the stomach contents of poisoned birds. Toxicon 35: 901–913.Google Scholar
  17. Hyde, E.G. and Carmichael, W.W. 1991. Anatoxin-a(s), a naturally occurring organophosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). J. Biochem. Toxicol. 6: 195–201.Google Scholar
  18. Jia, Y., Loh, Y.-T., Zhou, J. and Martin, G.B. 1997. Alleles of Pto and Fen occur in bacterial speck-suceptible and Fenthion-insensitve tomato cultivars and encode active protein kinases. Plant Cell 9: 61–73.Google Scholar
  19. Karczmar, A. 1998. Invited review: Anticholinesterases: Dramatic aspects of their use and misuse. Neurochem. Int. 32: 401–411.Google Scholar
  20. Kim, S.A., Kwak, J.M., Jae, S.K., Wang, M.H. and Nam, H.G. 2001. Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol. 42: 74–84.Google Scholar
  21. Kozukue, N., Kozukue, E., Yamashita, H. and Fujii, S. 1994. Alpha-tomatine purification and quantification in tomatoes by HPLC. J. Food Sci. 59: 1211–1212.Google Scholar
  22. Krasowski, M.D., McGehee, D.S. and Moss, J. 1997. Natural inhibitors of cholinesterases: Implications for adverse drug reactions. Can. J. Anaesth. 44: 525–534.Google Scholar
  23. Lam, H.M., Chiu, J., Hsieh, M.H., Meisel, L., Oliveira, I.C., Shin, M. and Coruzzi, G. 1998. Glutamate-receptor genes in plants [letter]. Nature 396: 125–126.Google Scholar
  24. Madhavan, S., Sarath, G., Lee, B.H. and Pegden, R.S. 1995. Guard cell protoplasts contain acetylcholinesterase activity. Plant Sci. 109: 119–127.Google Scholar
  25. Martin-Hernandez, A.M., Dufresne, M., Hugouvieux, V., Melton, R. and Osbourn, A. 2000. Effects of targeted replacement of the Tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Mol. Plant Microbe Interact. 13: 1301–1311.Google Scholar
  26. Mason, H.S., Warzecha, H., Mor, T. and Arntzen, C.J. 2002. Edible plant vaccines: Applications for prophylactic and therapeutic molecular medicine. Trends Mol. Med. 8: 324–329.Google Scholar
  27. Massoulie, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N. and Simon, S. 1998. Acetylcholinesterase: Cterminal domains, molecular forms and functional localization. J. Physiol. (Paris) 92: 183–190.Google Scholar
  28. Massoulie, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N. and Simon, S. 1999. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem. Biol. Interact. 119–120: 29–42.Google Scholar
  29. McGehee, D.S., Krasowski, M.D., Fung, D.L., Wilson, B., Gronert, G.A. and Moss, J. 2000. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology 93: 510–519.Google Scholar
  30. McTiernan, C., Adkins, S., Chatonnet, A., Vaughan, T.A., Bartels, C.F., Kott, M., Rosenberry, T.L., La Du, B.N. and Lockridge, O. 1987. Brain cDNA clone for human cholinesterase. Proc. Natl Acad. Sci. USA 84: 6682–6686.Google Scholar
  31. Mendelson, I., Kronman, C., Ariel, N., Shafferman, A. and Velan, B. 1998. Bovine acetylcholinesterase: Cloning, expression and characterization. Biochem. J. 334: 251–259.Google Scholar
  32. Momonoki, Y.S. 1997. Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol. 114: 47–53.Google Scholar
  33. Mor, T.S., Sternfeld, M., Soreq, H., Arntzen, C.J. and Mason, H.S. 2001. Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol. Bioeng. 75: 259–266.Google Scholar
  34. Oldroyd, G.E.D. and Staskawicz, B.J. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl Acad. Sci. USA 95: 10300–10305.Google Scholar
  35. Ono, H., Kozuka, D., Chiba, Y., Horigane, A. and Isshiki, K. 1997. Structure and cytotoxicity of dehydrotomatine, a minor component of tomato glycoalkaloids. J. Agric. Food Chem. 45: 3743–3746.Google Scholar
  36. Prody, C.A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O. and Soreq, H. 1987. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc. Natl Acad. Sci. USA 84: 3555–3559.Google Scholar
  37. Raves, M.L., Harel, M., Pang, Y.P., Silman, I., Kozikowski, A.P. and Sussman, J.L. 1997. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nat. Struct. Biol. 4: 57–63.Google Scholar
  38. Rick, C.M., Uhlig, J.W. and Jones, A.D. 1994. High alphatomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: Developmental and genetic aspects. Proc. Natl Acad. Sci. USA 91: 12877–12881.Google Scholar
  39. Riov, J. and Jaffe, M.J. 1973. Cholinesterases from plant tissues. I. Purification and characterization of a cholinesterase from mung bean roots. Plant Physiol. 51: 520–528.Google Scholar
  40. Roddick, J.G. 1974. The steroidal glycoalcalooid a-tomatine. Phytochemistry 13: 9–25.Google Scholar
  41. Roddick, J.G. 1989. The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 28: 2631–2634.Google Scholar
  42. Roddick, J.G. 1996. Streoidal glycoalkaloids: Nature and consequences of bioactivity. In: G.R. Waller and K. Yamasaki (Eds.), Saponins Used in Traditional and Modern Medicine, Plenum Press, New York, pp. 277–295.Google Scholar
  43. Roshchina, V.V. 2001. Nerotransmitters in Plant Life. Science Publishers Inc., Enfield.Google Scholar
  44. Sandrock, R.W., DellaPenna, D. and VanEtten, H.D. 1995. Purification and characterization of beta 2-tomatinase, an enzyme involved in the degradation of alpha-tomatine and isolation of the gene encoding beta 2-tomatinase from Septoria lycopersici. Mol. Plant Microbe Interact. 8: 960–970.Google Scholar
  45. Saxena, A., Maxwell, D.M., Quinn, D.M., Radic, Z., Taylor, P. and Doctor, B.P. 1997. Mutant acetylcholinesterases as potential detoxification agents for organophosphate poisoning. Biochem. Pharmacol. 54: 269–274.Google Scholar
  46. Sharma, S.S., Sharma, S. and Rai, V.K. 1987. Tomatine, Its Effect, and Interaction with Abscisic Acid on Stomatal Opening in Commelina-Communis. Phytochemistry 26: 877- 878.Google Scholar
  47. Soreq, H., Ben-Aziz, R., Prody, C.A., Seidman, S., Gnatt, A., Neville, L., Lieman-Hurwitz, J., Lev-Lehman, E., Ginzberg, D., Lipidot-Lifson, Y. et al. 1990. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc. Natl Acad. Sci. USA 87: 9688–9692.Google Scholar
  48. Soreq, H. and Seidman, S. 2001. Acetylcholinesterase - New roles for an old actor. Nat. Rev. Neurosci. 2: 294–302.Google Scholar
  49. Sternfeld, M., Patrick, J.D. and Soreq, H. 1998. Position effect variegations and brain-specific silencing in transgenic mice overexpressing human acetylcholinesterase variants. J. Physiol. (Paris) 92: 249–255.Google Scholar
  50. Taylor, J.A., O'Brien, A.J. and Yeager, M. 1996. The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glcyoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J. 15: 4469–4476.Google Scholar
  51. Taylor, P. 1996. Anticholinesterase Agents. In: J.G., Hardman, L.E., Limbird, P.B., Molinoff, R.W. Ruddon and A.G. Gilman (Eds.), Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, pp. 161–176.Google Scholar
  52. Tretyn, A. and Kendrick, R.E. 1991. Acetylcholine in plants: presence, metabolism and mechanism of action. Bot. Rev. 57: 33–73.Google Scholar
  53. Weill, M., Fort, P., Berthomieu, A., Dubois, M.P., Pasteur, N. and Raymond, M. 2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is nonhomologous to the ace gene Drosophila. Proc. R. Soc. Lond. B. Biol. Sci. 269: 2007–2016.Google Scholar
  54. Wessler, I., Kirkpatrick, C.J. and Racke, K. 1999. The cholinergic 'pitfall': Acetylcholine, a universal cell molecule in biological systems, including humans. Clin. Exp. Pharmacol. Physiol. 26: 198–205.Google Scholar
  55. Wierenga, J.M. and Hollingworth, R.M. 1992. Inhibition of insect acetylcholinesterase by the potato glycoalkaloid alphachaconine. Nat. Toxins 1: 96–99.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Samuel Fletcher
    • 1
  • Brian Geyer
    • 1
  • Amy Smith
    • 2
  • Tama Evron
    • 3
  • Lokesh Joshi
    • 2
  • Hermona Soreq
    • 3
  • Tsafrir Mor
    • 1
  1. 1.School of Life Sciences and Arizona Biodesign InstituteArizona State UniversityUSA
  2. 2.Harrington Department of Bioengineering and Arizona Biodesign InstituteArizona State UniversityTempeUSA
  3. 3.The Department of Biological ChemistryThe Institute of Life Sciences, The Hebrew University of JerusalemIsrael

Personalised recommendations