Advertisement

Plant Molecular Biology

, Volume 54, Issue 6, pp 895–909 | Cite as

The diversity of retroelements in diploid and allotetraploid Brassica species

  • Karine Alix
  • J.S.(pat) Heslop-harrison
Article

Abstract

Using universal PCR primers, some 80 fragments of retroelement reverse transcriptase genes were isolated from 16 accessions of the three diploid and three derived allotetraploid species of Brassica in the triangle of U. Sequence analysis showed that the Ty1/copia and LINE-like elements were distinct, while a third clade could be sub-divided into Ty3/gypsy, Athila and virus-like branches, providing evidence that there are multiple sub-lineages within this group normally considered to be gypsy-like elements in plants. The parsimony trees showed no branches correlating with the known genome relationships for the six diploid and allotetraploid Brassica species, probably because members of the element families were present in the common ancestor of the Brassica and, unlike other repetitive sequences, there is no evidence for genome-wide homogenization, although convergent evolution or horizontal transfer cannot be ruled out. Southern hybridization suggested some sub-families were amplified in individual species. The data show that retroelement sequence data do not allow inference of phylogeny, but knowledge of evolution of such abundant sequences assists in exploitation and interpretation of data from other species including models with much smaller genomes and may provide markers.

Brassica evolution phylogenetics retrotransposons reverse transcriptase (RT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alix, K., Baurens, F.-C., Paulet, F., Glaszmann, J.-C. and D'Hont, A. 1998. Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome 41: 854–864.PubMedGoogle Scholar
  2. Capy, P., Anxolabéhère, D. and Langin, T. 1994. The strange phylogenies of transposable elements: Are horizontal transfers the only explanation? Trends Genet. 10(1): 7–11.PubMedGoogle Scholar
  3. Cui, Y., Brugière, N., Jackman, L., Bi, Y.-M. and Rothstein, S.J. 1999. Structural and transcriptional comparative analysis of the S locus regions in two self-incompatible B. napus lines. Plant Cell 11: 2217–2231.PubMedGoogle Scholar
  4. Deragon, J.-M., Landry, B.S., Pélissier, T., Tutois, S., Tourmente, S. and Picard, G. 1994. An analysis of retroposition in plants based on a family of SINEs from B. napus. J. Mol. Evol. 39: 378–386.PubMedGoogle Scholar
  5. Deragon, J.-M. and Capy, P. 2000. Impact of transposable elements on the human genome. Ann. Med. 32(4): 264–273.PubMedGoogle Scholar
  6. Ellis, T.H.N., Poyser, S.J., Knox, M.R., Vershinin, A.V. and Ambrose, M.J. 1998. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol. Gen. Genet. 260: 9–19.PubMedGoogle Scholar
  7. Fawcett, D.H., Lister, C.K., Kellett, E. and Finnegan, D.J. 1986. Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47: 1007–1015.PubMedGoogle Scholar
  8. Flavell, A.J. 1992. Ty1-copia group retrotransposons and the evolution of retroelements in eukaryotes. Genetica 86: 203–214.PubMedGoogle Scholar
  9. Flavell, A.J., Jackson, V., Iqbal, M.P., Riach, I. and Waddell, S. 1995. Ty1-copia retrotransposon sequences in Amphibia and Reptilia. Mol. Gen. Genet. 246: 65–71.PubMedGoogle Scholar
  10. Flavell, A.J., Smith, D.B. and Kumar, A. 1992. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol. Gen. Genet. 231: 233–242.PubMedGoogle Scholar
  11. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  12. Friesen, N., Brandes, A. and Heslop-Harrison, J.S. 2001. Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers. Mol. Biol. Evol. 18(7): 1176–1188.PubMedGoogle Scholar
  13. Gabriel, A., Yen, T.J., Schwartz, D.C., Smith, C.L., Boeke, J.D., Sollner-Webb, B. and Cleveland, D.W. 1990. A rapidly rearranging retrotransposons within the miniexon gene locus of Crithidia fasciculata. Mol. Cell Biol. 10: 615–624.PubMedGoogle Scholar
  14. Gish, W.R. 2003. WU-BLAST archives: http://blast.wustl.edu.Google Scholar
  15. Grandbastien, M.-A. 1998. Activation of plant transposons under stress conditions. Trends Plant Sci. 3: 181–187.Google Scholar
  16. Gribbon, B.M., Pearce, S.R., Kalendar, R., Schulman, A., Paulin, L., Jack, P., Kumar, A. and Flavell, A.J. 1999. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet. 261: 883–891.PubMedGoogle Scholar
  17. Hansen, C. and Heslop-Harrison, J.S. 2004. Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Advances in Botanical Research 41: in press.Google Scholar
  18. Heslop-Harrison, J.S. 2002. www.molcyt.com – sidebar under methods/techniques to citations for retroelement primers.Google Scholar
  19. Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A.H. 1999. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98: 704–711Google Scholar
  20. Kubis, S.E., Heslop-Harrison, J.S., Desel, J.S. and Schmidt, T. 1998. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol. Biol. 36: 821–831.PubMedGoogle Scholar
  21. Kubis, S.E., Castilho, A.M.M.F., Vershinin, A.V. and Heslop-Harrison, J.S. 2003. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol. Biol. 52: 69–79.PubMedGoogle Scholar
  22. Kumar, A. 1998. The evolution of plant retroviruses: moving to green pasture. Trends Plant Sci. 3: 371–374.Google Scholar
  23. Kumar, A. and Bennetzen, J.L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479–532.PubMedGoogle Scholar
  24. Lagercrantz, U. 1998. Comparative mapping between A. thaliana and B. nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150: 1217–1228.PubMedGoogle Scholar
  25. Lagercrantz, U. and Lydiate, D. 1996. Comparative genome mapping in Brassica. Genetics 144: 1903–1910.PubMedGoogle Scholar
  26. Le, Q.H., Wright, S., Yu, Z. and Bureau, T. 2000. Transposon diversity in A. thaliana. Proc. Natl. Acad. Sci. USA 97: 7376–7381.PubMedGoogle Scholar
  27. Lenoir, A., Cournoyer, B., Warwick, S., Picard, G. and Deragon, J.-M. 1997. Evolution of SINE S1 retroposons in Cruciferae plant species. Mol. Biol. Evol. 14(9): 934–941.PubMedGoogle Scholar
  28. Lerat, E. and Capy, P. 1999. Retrotransposons and retroviruses: Analysis of the envelop gene. Mol. Biol. Evol. 16(9): 1198–1207.PubMedGoogle Scholar
  29. Liu, B. and Wendel, J.F. 2000. Retroelement activation followed by rapid repression in interspecific hybrid plants. Genome 43: 1–7.PubMedGoogle Scholar
  30. Marín, I. and Lloréns, C. 2000. Ty3/gypsy retrotransposons: description of new A. thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol. Biol. Evol. 17(7): 1040–1049.PubMedGoogle Scholar
  31. McClure, M.A. 1991. Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol. Biol. Evol. 8: 835–856.PubMedGoogle Scholar
  32. Mount, S.M. and Rubin, G.M. 1985. Complete nucleotide sequence of the Drosophila transposable element copia: Homology between copia and retroviral proteins. Mol. Cell Biol. 5: 1630–1638.PubMedGoogle Scholar
  33. Noma, K., Ohtsubo, E. and Ohtsubo, H. 1999. Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol. Gen. Genet. 261: 71–79.PubMedGoogle Scholar
  34. Pearce, S.R., Knox, M., Ellis, T.H.N., Flavell, A.J. and Kumar, A. 2000. Pea Ty1-copia group retrotransposons: Transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet. 263: 898–907.PubMedGoogle Scholar
  35. Pearce, S.R., Stuart-Rogers, C.M., Kumar, A., Ellis, T.H.N. and Flavell A.J. 1999. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J. 19: 711–717.PubMedGoogle Scholar
  36. Pélissier, T., Tutois, S., Deragon, J.-M., Tourmente, S., Genestier, S. and Picard, G. 1995. Athila, a new retroelement from A. thaliana. Plant Mol. Biol. 29: 441–452.PubMedGoogle Scholar
  37. Pradhan, A.K., Prakash, S., Mukhopadhyay, A. and Pental D. 1992. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: Molecular and taxonomic classifications are incongruous. Theor. Appl. Genet. 85: 331–340.Google Scholar
  38. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  39. SanMiguel, P. and Bennetzen, J.L. 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37–44.Google Scholar
  40. Song, K., Osborn, T.C. and Williams P.H. 1988a. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) – 1. Genome evolution of diploid and amphidiploid species. Theor. Appl. Genet. 75: 784–794.Google Scholar
  41. Song, K., Osborn, T.C. and Williams P.H. 1988b. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) – 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor. Appl. Genet. 76: 593–600.Google Scholar
  42. Song, K., Osborn, T.C. and Williams P.H. 1990. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) – 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor. Appl. Genet. 79: 497–506.Google Scholar
  43. Song, S., Gerasimova, T., Kurkulos, M., Boeke, J. and Corces V. 1994. An env-like protein encoded by a Drosophila retroelement: Evidence that gypsy is a infectious retrovirus. Genes Dev. 8: 2046–2057.PubMedGoogle Scholar
  44. Tatout, C., Warwick, S., Lenoir, A. and Deragon, J.-M. 1999. SINE insertions as clade markers for wild crucifer species. Mol. Biol. Evol. 16: 1614–1621.Google Scholar
  45. Terol, J., Castillo, M.C., Bargues, M., Perez-Alonso, M. and de Frutos, R. 2001. Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome. Mol. Biol. Evol. 18(5): 882–892.PubMedGoogle Scholar
  46. Thornton, J.W. and DeSalle, R. 2000. Gene family evolution and homology: Genomics meets phylogenetics. Ann. Rev. Genomics Hum. Genet. 1: 41–73.Google Scholar
  47. U, N. 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7: 389–452.Google Scholar
  48. Vicient, C.M., Kalendar, R. and Schulman, A.H. 2001. Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res. 11: 2041–2049.PubMedGoogle Scholar
  49. Voytas, D.F., Cummings, M.P., Konieczny, A., Ausubel, F.M. and Rodermel, S.R. 1992. Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89: 7124–7128.PubMedGoogle Scholar
  50. Warwick, S.I. and Black, L.D. 1991. Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)-chloroplast genome and cytodeme congruence. Theor. Appl. Genet. 82: 81–92.Google Scholar
  51. Wessler, S.R. 1996. Plant retrotransposons: Turned on by stress. Curr. Biol. 6: 959–961.PubMedGoogle Scholar
  52. Wright, D.A. and Voytas, D.F. 1998. Potential retroviruses in plants: Tat1 is related to a group of A. thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149: 703–715.PubMedGoogle Scholar
  53. Wright, D.A. and Voytas, D.F. 2001. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12: 122–131.Google Scholar
  54. Xiong, Y. and Eickbush, T.H. 1990. Origin and evolution of retroelements based on their reverse transcriptase sequences. EMBO J. 9: 3353–3362.PubMedGoogle Scholar
  55. Yang, Y.-W., Tai, P.-Y., Chen, Y. and Li, W.-H. 2002. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol. Phylogenet. Evol. 23: 268–275.PubMedGoogle Scholar
  56. Zhao, X., Si, Y., Hanson, R.E., Crane, C.F., Price, H.J., Stelly, D.M., Wendel, J.F. and Paterson, A.H. 1998. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res. 8: 479–492.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Karine Alix
    • 1
    • 2
  • J.S.(pat) Heslop-harrison
    • 1
  1. 1.Department of BiologyUniversity of LeicesterUK
  2. 2.UMR 118 INRA-ENSARAmélioration des Plantes et Biotechnologies VégétalesFrance

Personalised recommendations