Plant Molecular Biology

, Volume 55, Issue 2, pp 165–181 | Cite as

Spatial and temporal analysis of the local response to wounding

  • Christian Delessert
  • Iain Wilson
  • Dominique Van Der Straeten
  • Elizabeth Dennis
  • Rudy Dolferus


We studied the local response to wounding in Arabidopsis thaliana leaves using a two-step microarray analysis. A microarray containing 3500 cDNA clones was first screened to enrich for genes affected by wounding in the immediate vicinity of the wound (4 h post wounding). 359 non-redundant putative wound responsive genes were then spotted on a smaller wound-response array for detailed analysis of spatial expression (local, adjacent and systemic), timing of expression (0.5, 4, 8, 17 h), and effect of hormone treatments (methyl jasmonate, ethylene and abscisic acid). Our results show that genes that respond early at the site of the wound also respond throughout the plant, with similar kinetics. Early-induced genes which respond systemically encode predominantly signal transduction and regulatory factors (36%), and the expression of many of them is also controlled by methyl jasmonate (about 35% of the 36%). Genes specific to the wound site and the wounded leaf have a slower response to wounding and are mainly metabolic genes. At the wound, many genes of the lignin biosynthesis pathway were induced. In silico analysis of the 5′ promoter regions of genes affected by wounding revealed G-box-related motifs in a significant proportion of the promoters. These results show that the establishment of a systemic response to wounding is a priority for the plant, and that the local response at the wound site is established later. Ethylene and abscisic acid are involved in the local response, regulating repression of photosynthetic genes and expression of drought responsive genes respectively.

Arabidopsis thaliana mechanical wounding microarray phytohormones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin, I.T. 1989. Mechanism of damage-induced alkaloid production in wild tobacco. J. Chem. Ecol. 15: 1661–1680.CrossRefGoogle Scholar
  2. Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J. and Grierson, D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9: 525–535.CrossRefPubMedGoogle Scholar
  3. Bergey, D.R., Orozco-Cardenas, M., de Moura, D.S. and Ryan, C.A. 1999. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA 96: 1756–1760.CrossRefPubMedGoogle Scholar
  4. Birkenmeier, G.F. and Ryan, C.A. 1998. Wound signaling in tomato plants. Evidence that aba is not a primary signal for defense gene activation. Plant Physiol. 117: 687–693.CrossRefPubMedGoogle Scholar
  5. Bowles, D.J. 1990. Defense-related proteins in higher-plants. Ann. Rev. Biochem. 59: 873–907.CrossRefPubMedGoogle Scholar
  6. Bowles, D.J. 1993. Local and systemic signals in the wound response. Semin. Cell Biol. 4: 103–111.CrossRefPubMedGoogle Scholar
  7. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J. and Vingron, M. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29: 365–371.CrossRefPubMedGoogle Scholar
  8. Campbell, E.J., Schenk, P.M., Kazan, K., Penninckx, I.A., Anderson, J.P., Maclean, D.J., Cammue, B.P., Ebert, P.R. and Manners, J.M. 2003. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol. 133: 1272–1284.CrossRefPubMedGoogle Scholar
  9. Chapman, S., Schenk, P., Kazan, K. and Manners, J. 2002. Using biplots to interpret gene expression patterns in plants. Bioinformatics 18: 202–204.CrossRefPubMedGoogle Scholar
  10. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T. and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal responses in Arabidopsis. Plant Physiol. 129: 661–677.CrossRefPubMedGoogle Scholar
  11. de Bruxelles, G.L. and Roberts, M.R. 2001. Signals regulating multiple responses to wounding and herbivores. Crit. Rev. Plant Sci. 20: 487–521.CrossRefGoogle Scholar
  12. Deng, W.L., Hamiltonkemp, T.R., Nielsen, M.T., Andersen, R.A., Collins, G.B. and Hildebrand, D.F. 1993. Effects of 6-carbon aldehydes and alcohols on bacterial proliferation. J. Agri. Food Chem. 41: 506–510.CrossRefGoogle Scholar
  13. Doares, S.H., Syrovets, T., Weiler, E.W. and Ryan, C.A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92: 4095–4098.PubMedGoogle Scholar
  14. Dolferus, R., Jacobs, M., Peacock, W.J. and Dennis, E.S. 1994. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 105: 1075–1087.CrossRefPubMedGoogle Scholar
  15. Dolferus, R., Osterman, J.C., Peacock, W.J. and Dennis, E.S. 1997. Cloning of the Arabidopsis and rice formaldehyde dehydrogenase genes: implications for the origin of plant ADH enzymes. Genetics 146: 1131–1141.PubMedGoogle Scholar
  16. Donald, R.G. and Cashmore, A.R. 1990. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J. 9: 1717–1726.PubMedGoogle Scholar
  17. Ellis, C. and Turner, J.G. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025–1033.CrossRefPubMedGoogle Scholar
  18. Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199–206.CrossRefPubMedGoogle Scholar
  19. Farmer, E.E. and Ryan, C.A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713–7716.PubMedGoogle Scholar
  20. Foster, R., Izawa, T. and Chua, N.H. 1994. Plant bZIP proteins gather at ACGT elements. FASEB J. 8: 192–200.PubMedGoogle Scholar
  21. Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393–404.CrossRefPubMedGoogle Scholar
  22. Gong, Z.Z., Koiwa, H., Cushman, M.A., Ray, A., Bufford, D., Kore-eda, S., Matsumoto, T.K., Zhu, J.H., Cushman, J.C., Bressan, R.A. and Hasegawa, P.M. 2001. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126: 363–375.CrossRefPubMedGoogle Scholar
  23. Hobo, T., Asada, M., Kowyama, Y. and Hattori, T. 1999. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 19: 679–689.CrossRefPubMedGoogle Scholar
  24. Kays, S.J. and Pallas, J.E. 1980. Inhibition of photosynthesis by ethylene. Nature 285: 51–52.CrossRefGoogle Scholar
  25. Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R. and Dennis, E.S. 2002. Expression profile analysis of the lowoxygen response in Arabidopsis root cultures. Plant Cell 14: 2481–2494.CrossRefPubMedGoogle Scholar
  26. Kovtun, Y., Chiu, W.L., Zeng, W.K. and Sheen, J. 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716–720.CrossRefPubMedGoogle Scholar
  27. Krause, G.H. and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Phys. Plant Mol. Biol. 42: 313–349.CrossRefGoogle Scholar
  28. Lee, G.I. and Howe, G.A. 2003. The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J. 33: 567–576.CrossRefPubMedGoogle Scholar
  29. Leon, J., Rojo, E. and Sanchez-Serrano, J.J. 2001. Wound signalling in plants. J. Exp. Bot. 52: 1–9.CrossRefGoogle Scholar
  30. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Phys. Plant Mol. Biol. 49: 199–222.CrossRefGoogle Scholar
  31. Levin, D.A. 1973. Role of trichomes in plant defense. Q. Rev. Biol 48: 3–15.CrossRefGoogle Scholar
  32. Li, L., Li, C., Lee, G.I. and Howe, G.A. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA 99: 6416–6421.CrossRefPubMedGoogle Scholar
  33. Li, N., Parsons, B.L., Liu, D.R. and Mattoo, A.K. 1992. Accumulation of wound-inducible acc synthase transcript in tomato fruit is inhibited by salicylic-acid and polyamines. Plant Mol. Biol. 18: 477–487.CrossRefPubMedGoogle Scholar
  34. Nishiuchi, T., Suzuki, K., Kitajima, S., Sato, F. and Shinshi, H. 2002. Wounding activates immediate early transcription of genes for ERFs in tobacco plants. Plant Mol. Biol. 49: 473–482.CrossRefPubMedGoogle Scholar
  35. O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O. and Bowles, D.J. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914–1917.CrossRefPubMedGoogle Scholar
  36. Orozco-Cardenas, M. and Ryan, C.A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96: 6553–6557.CrossRefPubMedGoogle Scholar
  37. Pallas, J.E. and Kays, S.J. 1982. Inhibition of photosynthesis by ethylene-a stomatal effect. Plant Physiol. 70: 598–601.Google Scholar
  38. Peña-Cortés, H., Fisahn, J. and Willmitzer, L. 1995. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA 92: 4106–4113.PubMedGoogle Scholar
  39. Perez-Amador, M.A., Leon, J., Green, P.J. and Carbonell, J. 2002. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol. 130: 1454–1463.CrossRefPubMedGoogle Scholar
  40. Pfundel, E. and Bilger, W. 1994. Regulation and possible function of the violaxanthin cycle. Photosynth. Res. 42: 89–109.CrossRefGoogle Scholar
  41. Pieterse, C.M.J., Ton, J. and Van Loon, L.C. 2001. Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet 3: 1–8.Google Scholar
  42. Reymond, P., Weber, H., Damond, M. and Farmer, E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–720.CrossRefPubMedGoogle Scholar
  43. Rittinger, P.A., Biggs, A.R. and Peirson, D.R. 1987. Histochemistry of lignin and suberin deposition in boundary-layers formed after wounding in various plant-species and organs. Can. J. Bot-Rev. Can. Bot. 65: 1886–1892.Google Scholar
  44. Rojo, E., Leon, J. and Sanchez-Serrano, J.J. 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20: 135–142.CrossRefPubMedGoogle Scholar
  45. Rojo, E., Solano, R. and Sanchez-Serrano, J.J. 2003. Interactions between signaling compounds involved in plant defense. J. Plant Growth Reg. 22: 82–98.CrossRefGoogle Scholar
  46. Rose, A., Meier, I. and Wienand, U. 1999. The tomato I-box binding factor LeMYBI is a member of a novel class of Myblike proteins. Plant J. 20: 641–652.CrossRefPubMedGoogle Scholar
  47. Ryan, C.A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477: 112–121.PubMedGoogle Scholar
  48. Ryan, C.A. and Moura, D.S. 2002. Systemic wound signaling in plants: a new perception. Proc. Natl. Acad. Sci. USA 99: 6519–6520.CrossRefPubMedGoogle Scholar
  49. Scalbert, A. 1991. Antimicrobial properties of tannins. Phytochemistry 12: 3875–3883.CrossRefGoogle Scholar
  50. Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660.CrossRefPubMedGoogle Scholar
  51. Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002 Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a fulllength cDNA array. Funct. Integr. Genomics 2: 282–291.CrossRefPubMedGoogle Scholar
  52. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki,K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61–72.CrossRefPubMedGoogle Scholar
  53. Stitt, M. and Hurry, V. 2002. A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5: 199–206.CrossRefPubMedGoogle Scholar
  54. Strassner, J., Schaller, F., Frick, U.B., Howe, G.A., Weiler, E.W., Amrhein, N., Macheroux, P. and Schaller, A. 2002. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J. 32: 585–601.CrossRefPubMedGoogle Scholar
  55. Sturn, A., Quackenbush, J. and Trajanoski, Z. 2002. Genesis: cluster analysis of microarray data. Bioinformatics 18: 207–208.CrossRefPubMedGoogle Scholar
  56. Terzaghi, W.B. and Cashmore, A.R. 1995. Photomorphogenesis. Seeing the light in plant development. Curr. Biol. 5: 466–468.CrossRefPubMedGoogle Scholar
  57. Thornburg, R.W. and Li, X. 1991. Wounding Nicotiana tabaccum leaves causes a decline in endogenous indole-3-acetic acid levels. Plant Physiol. 96: 802–805.Google Scholar
  58. Tire, C., De Rycke, R., De Loose, M., Inze, D., Van Montagu, M. and Engler, G. 1994. Extensin gene expression is induced by mechanical stimuli leading to local cell wall strengthening in Nicotiana plumbaginifolia. Planta 195: 175–181.PubMedGoogle Scholar
  59. Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P. and Sanchez-Serrano, J.J. 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc. Natl. Acad. Sci. USA 98: 8139–8144.CrossRefPubMedGoogle Scholar
  60. Wilmouth, R.C., Turnbull, J.J., Welford, R.W.D., Clifton, I.J., Prescott, A.G. and Schofield, C.J. 2002. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10: 93–103.CrossRefPubMedGoogle Scholar
  61. Wilson, D.L., Buckley, M.J., Helliwell, C.A. and Wilson, I.W. 2003. New normalization methods for cDNA microarray data. Bioinformatics 19: 1325–1332.CrossRefPubMedGoogle Scholar
  62. Wu, S.H., Ramonell, K., Gollub, J. and Somerville, S. 2001. Plant gene expression profiling with DNA microarrays. Plant Physiol. Biochem. 39: 917–926.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Christian Delessert
    • 1
    • 2
  • Iain Wilson
    • 1
  • Dominique Van Der Straeten
    • 2
  • Elizabeth Dennis
    • 1
  • Rudy Dolferus
    • 1
  1. 1.CSIRO Plant IndustryCanberraAustralia
  2. 2.Department of Molecular GeneticsGhent UniversityGhentBelgium

Personalised recommendations