pp 1–9 | Cite as

A clinical and pathophysiological approach to traumatic brain injury-induced pituitary dysfunction

  • Sule Temizkan
  • Fahrettin KelestimurEmail author



This review aimed to evaluate the data underlying the pathophysiology of TBI-induced hypothalamo-pituitary dysfunction.


Recent literature about the pathophysiology of TBI-induced hypothalamo-pituitary dysfunction reviewed.


Traumatic brain injury (TBI) is a worldwide epidemic that frequently leads to death; TBI survivors tend to sustain cognitive, behavioral, psychological, social, and physical disabilities in the long term. The most common causes of TBI include road accidents, falls, assaults, sports, work and war injuries. From an endocrinological perspective, TBIs are important, because they can cause pituitary dysfunction. Although TBI-induced pituitary dysfunction was first reported a century ago, most of the studies that evaluate this disorder were published after 2000. TBI due to sports and blast injury-related pituitary dysfunction is generally underreported, due to limited recognition of the cases.


The underlying pathophysiology responsible for post-TBI pituitary dysfunction is not clear. The main proposed mechanisms are vascular injury, direct traumatic injury to the pituitary gland, genetic susceptibility, autoimmunity, and transient medication effects.


Traumatic brain injury Pituitary dysfunction Pathophysiology Antipituitary antibodies 


Compliance with ethical standards

Conflict of interest

Sule Temizkan and Fahrettin Kelestimur declares that they have no conflict of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Pervez M, Kitagawa RS, Chang TR (2018) Definition of traumatic brain injury, neurosurgery, trauma orthopedics, neuroimaging, psychology, and psychiatry in mild traumatic brain injury. Neuroimaging Clin N Am 28(1):1–13. Google Scholar
  2. 2.
    Rusnak M (2013) Traumatic brain injury: Giving voice to a silent epidemic. Nat Rev Neurol 9(4):186–187. Google Scholar
  3. 3.
    Nguyen R, Fiest KM, McChesney J, Kwon CS, Jette N, Frolkis AD, Atta C, Mah S, Dhaliwal H, Reid A, Pringsheim T, Dykeman J, Gallagher C (2016) The international incidence of traumatic brain injury: a systematic review and meta-analysis. Can J Neurol Sci 43(6):774–785. Google Scholar
  4. 4.
    Iaccarino C, Carretta A, Nicolosi F, Morselli C (2018) Epidemiology of severe traumatic brain injury. J Neurosurg Sci 62(5):535–541. Google Scholar
  5. 5.
    Sezgin-Caglar A, Tanriverdi F, Karaca Z, Unluhizarci K, Kelestimur F (2018) Sports-related repetitive traumatic brain injury: a novel cause of pituitary dysfunction. J Neurotrauma. Google Scholar
  6. 6.
    Cryan E (1918) Pituitary damage due to skull base fracture. Dtsch Med Wochenschr 44:1261Google Scholar
  7. 7.
    Lauzier F, Turgeon AF, Boutin A, Shemilt M, Cote I, Lachance O, Archambault PM, Lamontagne F, Moore L, Bernard F, Gagnon C, Cook D (2014) Clinical outcomes, predictors, and prevalence of anterior pituitary disorders following traumatic brain injury: a systematic review. Crit Care Med 42(3):712–721. Google Scholar
  8. 8.
    Tanriverdi F, Schneider HJ, Aimaretti G, Masel BE, Casanueva FF, Kelestimur F (2015) Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocrine Rev 36(3):305–342. Google Scholar
  9. 9.
    Nemes O, Kovacs N, Szujo S, Bodis B, Bajnok L, Buki A, Doczi T, Czeiter E, Mezosi E (2016) Can early clinical parameters predict post-traumatic pituitary dysfunction in severe traumatic brain injury? Acta Neurochir (Wien) 158(12):2347–2353. Google Scholar
  10. 10.
    Kelly DF, Gonzalo IT,. Cohan P, Berman N, Swerdloff R, Wang C (2000) Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J Neurosurg 93(5):743–752. Google Scholar
  11. 11.
    Klose M, Juul A, Poulsgaard L, Kosteljanetz M, Brennum J, Feldt-Rasmussen U (2018) Prevalence and predictive factors of post-traumatic hypopituitarism. Clin Endocrinol (Oxf) 67(2):193–201. Google Scholar
  12. 12.
    Schneider M, Schneider HJ, Yassouridis A, Saller B, Von-Rosen F, Stalla GK (2008) Predictors of anterior pituitary insufficiency after traumatic brain injury. Clin Endocrinol 68(2):206–212. Google Scholar
  13. 13.
    Schneider HJ, Samann PG, Schneider M, Croce CG, Corneli G, Sievers C, Ghigo E, Stalla GK, Aimaretti G (2007) Pituitary imaging abnormalities in patients with and without hypopituitarism after traumatic brain injury. J Endocrinol Investig 30(4):RC9–RC12. Google Scholar
  14. 14.
    Dusick JR, Wang C, Cohan P, Swerdloff R, Kelly DF (2012) Pathophysiology of hypopituitarism in the setting of brain injury. Pituitary 15(1):2–9. Google Scholar
  15. 15.
    Salehi F, Kovacs K, Scheithauer BW, Pfeifer EA, Cusimano M (2007) Histologic study of the human pituitary gland in acute traumatic brain injury. Brain Inj 21(6):651–656. Google Scholar
  16. 16.
    Gorczyca W, Hardy J (1987) Arterial supply of the human anterior pituitary gland. Neurosurgery 20(3):369–378Google Scholar
  17. 17.
    Bavisetty S, Bavisetty S, McArthur DL, Dusick JR, Wang C, Cohan P, Boscardin WJ, Swerdloff R, Levin H, Chang DJ, Muizelaar JP, Kelly DF (2008) Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery 62(5):1080–1093. discussion 1093–1084Google Scholar
  18. 18.
    Krahulik D, Zapletalova J, Frysak Z, Vaverka M (2010) Dysfunction of hypothalamic-hypophysial axis after traumatic brain injury in adults. J Neurosurg 113(3):581–584. Google Scholar
  19. 19.
    Ceballos R (1996) Pituitary changes in head trauma (analysis of 102 consecutive cases of head injury). Ala J Med Sci 3(2):185–198Google Scholar
  20. 20.
    Kornblum RN, Fisher RS (1969) Pituitary lesions in craniocerebral injuries. Arch Pathol 88(3):242–248Google Scholar
  21. 21.
    Kelestimur F, Tanriverdi F, Atmaca H, Unluhizarci K, Selcuklu A, Casanueva FF (2004) Boxing as a sport activity associated with isolated GH deficiency. J Endocrinol Investig 27(11):RC28–R32. Google Scholar
  22. 22.
    Browne KD, Chen XH, Meaney DF, Smith DH (2011) Mild traumatic brain injury and diffuse axonal injury in swine. J Neurotrauma 28(9):1747–1755. Google Scholar
  23. 23.
    Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43. Google Scholar
  24. 24.
    Johnson VE, Stewart W, Arena JD, Smith DH (2017) Traumatic brain injury as a trigger of neurodegeneration. Adv Neurobiol 15:383–400. Google Scholar
  25. 25.
    Zhou S, Sun XC (2012) Influence of apolipoprotein E and its receptors on cerebral amyloid precursor protein metabolism following traumatic brain injury. Chin J Traumatol 15(3):183–187Google Scholar
  26. 26.
    Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26(19):4985–4994. Google Scholar
  27. 27.
    Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252. Google Scholar
  28. 28.
    James R, Searcy JL, Le-Bihan T, Martin SF, Gliddon CM, Povey J, Deighton RF, Kerr LE, McCulloch J, Horsburgh K (2012) Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge. J Cereb Blood Flow Metab 32(1):164–176. Google Scholar
  29. 29.
    Jiang L, Zhong J, Dou X, Cheng C, Huang Z, Sun X (2015) Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury. Neuroscience 301:375–383. Google Scholar
  30. 30.
    Terrell TR, Abramson R, Barth JT, Bennett E, Cantu RC, Sloane R, Laskowitz DT, Erlanger DM, McKeag D, Nichols G, Valentine V, Galloway L (2018) Genetic polymorphisms associated with the risk of concussion in 1056 college athletes: a multicentre prospective cohort study. Br J Sports Med 52(3):192–198. Google Scholar
  31. 31.
    Tanriverdi F, Taheri S, Ulutabanca H, Caglayan AO, Ozkul Y, Dundar M, Selcuklu A, Unluhizarci K, Casanueva FF, Kelestimur F (2008) Apolipoprotein E3/E3 genotype decreases the risk of pituitary dysfunction after traumatic brain injury due to various causes: preliminary data. J Neurotrauma 25(9):1071–1077. Google Scholar
  32. 32.
    Tanriverdi F, De-Bellis A, Teksahin H, Alp E, Bizzarro A, Sinisi AA, Bellastella G, Paglionico VA, Bellastella A, Unluhizarci K, Doganay M, Kelestimur F (2012) Prospective investigation of pituitary functions in patients with acute infectious meningitis: is acute meningitis induced pituitary dysfunction associated with autoimmunity? Pituitary 15(4):579–588. Google Scholar
  33. 33.
    Tanriverdi F, Unluhizarci K, Kelestrimur F (2010) Persistent neuroinflammation may be involved in the pathogenesis of traumatic brain injury (TBI)-induced hypopituitarism: potential genetic and autoimmune factors. J Neurotrauma 27(2):301–302. Google Scholar
  34. 34.
    Lynch JR, Wang H, Mace B, Leinenweber S, Warner DS, Bennett ER, Vitek MP, McKenna S, Laskowitz DT (2005) A novel therapeutic derived from apolipoprotein E reduces brain inflammation and improves outcome after closed head injury. Exp Neurol 192(1):109–116. Google Scholar
  35. 35.
    Laskowitz DT, Goel S, Bennett ER, Matthew WD (1997) Apolipoprotein E suppresses glial cell secretion of TNF alpha. J Neuroimmunol 76(1–2):70–74Google Scholar
  36. 36.
    Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KK (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59(6):471–483. Google Scholar
  37. 37.
    Tanriverdi F, De-Bellis A, Bizzarro A, Sinisi AA, Bellastella G, Pane E, Bellastella A, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2008) Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol 159(1):7–13. Google Scholar
  38. 38.
    Tanriverdi F, De-Bellis A, Battaglia M, Bellastella G, Bizzarro A, Sinisi AA, Bellastella A, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2010) Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol 162(5):861–867. Google Scholar
  39. 39.
    Cohan P, Wang C, McArthur DL, Cook SW, Dusick JR, Armin B, Swerdloff R, Vespa P, Muizelaar JP, Cryer HG, Christenson PD, Kelly DF (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33(10):2358–2366Google Scholar
  40. 40.
    Daniel PM, Prichard MM, Treip CS (1959) Traumatic infarction of the anterior lobe of the pituitary gland. Lancet 2(7109):927–931Google Scholar
  41. 41.
    Greco T, Hovda D, Prins M (2013) The effects of repeat traumatic brain injury on the pituitary in adolescent rats. J Neurotrauma 30(23):1983–1990. Google Scholar
  42. 42.
    Ozdemir D, Baykara B, Aksu I, Kiray M, Sisman AR, Cetin F, Dayi A, Gurpinar T, Uysal N, Arda MN (2012) Relationship between circulating IGF-1 levels and traumatic brain injury-induced hippocampal damage and cognitive dysfunction in immature rats. Neurosci Lett 507(1):84–89. Google Scholar
  43. 43.
    Rubovitch V, Edut S, Sarfstein R, Werner H, Pick CG (2010) The intricate involvement of the Insulin-like growth factor receptor signaling in mild traumatic brain injury in mice. Neurobiol Dis 38(2):299–303. Google Scholar
  44. 44.
    Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10(4):729–740Google Scholar
  45. 45.
    Molina DP, Ariwodola OJ, Linville C, Sonntag WE, Weiner JL, Brunso-Bechtold JK, Adams MM (2012) Growth hormone modulates hippocampal excitatory synaptic transmission and plasticity in old rats. Neurobiol Aging 33(9):1938–1949. Google Scholar
  46. 46.
    Osterstock G, El-Yandouzi T, Romano N, Carmignac D, Langlet F, Coutry N, Guillou A, Schaeffer M, Chauvet N, Vanacker C, Galibert E, Dehouck B, Robinson IC, Prévot V, Mollard P, Plesnila N, Méry PF (2014) Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice. Endocrinology 155(5):1887–1898. Google Scholar
  47. 47.
    Kasturi BS, Stein DG (2009) Traumatic brain injury causes long-term reduction in serum growth hormone and persistent astrocytosis in the cortico-hypothalamo-pituitary axis of adult male rats. J Neurotrauma 26(8):1315–1324. Google Scholar
  48. 48.
    Russell AL, Richardson MR, Bauman BM, Hernandez IM, Saperstein S, Handa RJ, Wu TJ (2018) Differential responses of the HPA axis to mild blast traumatic brain injury in male and female mice. Endocrinology 159(6):2363–2375. Google Scholar
  49. 49.
    Daneshvar DH, Nowinski CJ, McKee AC, Cantu RC (2011) The epidemiology of sport-related concussion. Clin Sports Med 30(1):1–17. vii ).Google Scholar
  50. 50.
    Winkler EA, Yue JK, Burke JF, Chan AK, Dhall SS, Berger MS, Manley GT, Tarapore PE (2016) Adult sports-related traumatic brain injury in United States trauma centers. Neurosurg Focus 40(4):E4 (2016). Google Scholar
  51. 51.
    Tanriverdi F, Unluhizarci K, Kocyigit I, Tuna IS, Karaca Z, Durak AC, Selcuklu A, Casanueva FF, Kelestimur F (2008) Brief communication: pituitary volume and function in competing and retired male boxers. Ann Intern Med 148(11):827–831Google Scholar
  52. 52.
    Tanriverdi F, Unluhizarci K, Coksevim B, Selcuklu A, Casanueva FF, Kelestimur F (2007) Kickboxing sport as a new cause of traumatic brain injury-mediated hypopituitarism. Clin Endocrinol (Oxf) 66(3):360–366. Google Scholar
  53. 53.
    Zetterberg H, Tanriverdi F, Unluhizarci K, Selcuklu A, Kelestimur F, Blennow K (2009) Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj 23(9):723–726. Google Scholar
  54. 54.
    Kelly DF, Chaloner C, Evans D, Mathews A, Cohan P, Wang C, Swerdloff R, Sim MS, Lee J, Wright MJ et al (2014) Prevalence of pituitary hormone dysfunction, metabolic syndrome, and impaired quality of life in retired professional football players: a prospective study. J Neurotrauma 31(13):1161–1171. Google Scholar
  55. 55.
    Auer M, Stalla GK, Athanasoulia AP (2013) Isolated gonadotropic deficiency after multiple concussions in a professional soccer player. Dtsch Med Wochenschr 138(16):831–833. Google Scholar
  56. 56.
    Foley CM, Wang DH (2012) Central diabetes insipidus following a sports-related concussion: a case report. Sports Health 4(2):139–141. Google Scholar
  57. 57.
    Wilkinson CW, Pagulayan KF, Petrie EC, Mayer CL, Colasurdo EA, Shofer JB, Hart KL, Hoff D, Tarabochia MA, Peskind ER (2012) High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front Neurol 3:11. Google Scholar
  58. 58.
    Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30(2):255–266. Google Scholar
  59. 59.
    Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, Upreti C, Kracht JM, Ericsson M, Wojnarowicz MW et al (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4(134):134ra160. Google Scholar
  60. 60.
    Ioachimescu AG, Hampstead BM, Moore A, Burgess E, Phillips LS (2015) Growth hormone deficiency after mild combat-related traumatic brain injury. Pituitary 18(4):535–541. Google Scholar
  61. 61.
    Undurti A, Colasurdo EA, Sikkema CL, Schultz JS, Peskind ER, Pagulayan KF, Wilkinson CW (2018) Chronic hypopituitarism associated with increased postconcussive symptoms is prevalent after blast-induced mild traumatic brain injury. Front Neurol 9:72. Google Scholar
  62. 62.
    Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2(7872):81–84Google Scholar
  63. 63.
    Dalwadi PP, Bhagwat NM, Tayde PS, Joshi AS, Varthakavi PK (2017) Pituitary dysfunction in traumatic brain injury: is evaluation in the acute phase worthwhile? Indian J Endocrinol Metab 21(1):80–84. Google Scholar
  64. 64.
    Hari-Kumar KV, Swamy MN, Khan MA (2016) Prevalence of hypothalamo pituitary dysfunction in patients of traumatic brain injury. Indian J Endocrinol Metabol 20(6):772–778. Google Scholar
  65. 65.
    Alavi SA, Tan CL, Menon DK, Simpson HL, Hutchinson PJ (2016) Incidence of pituitary dysfunction following traumatic brain injury: a prospective study from a regional neurosurgical centre. Br J Neurosurg 30(3):302–306. Google Scholar
  66. 66.
    Prasanna KL, Mittal RS, Gandhi A (2015) Neuroendocrine dysfunction in acute phase of moderate-to-severe traumatic brain injury: a prospective study. Brain Inj 29(3):336–342. Google Scholar
  67. 67.
    Hannon MJ, Crowley RK, Behan LA, O’Sullivan EP, O’Brien MM, Sherlock M, Rawluk D, O’Dwyer R, Tormey W, Thompson CJ (2013) Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J Clin Endocrinol Metab 98(8):3229–3237. Google Scholar
  68. 68.
    Olivecrona Z, Dahlqvist P, Koskinen LO (2013) Acute neuro-endocrine profile and prediction of outcome after severe brain injury. Scand J Trauma Resusc Emerg Med 21:33. Google Scholar
  69. 69.
    Tanriverdi F, Senyurek H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2006) High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 91(6):2105–2111. Google Scholar
  70. 70.
    Agha A, Phillips J, O’Kelly P, Tormey W, Thompson CJ (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118(12):1416. Google Scholar
  71. 71.
    Giuliano S, Talarico S, Bruno L, Nicoletti FB, Ceccotti C, Belfiore A (2017) Growth hormone deficiency and hypopituitarism in adults after complicated mild traumatic brain injury. Endocrine 58(1):115–123. Google Scholar
  72. 72.
    Krewer C, Schneider M, Schneider HJ, Kreitschmann-Andermahr I, Buchfelder M, Faust M, Berg C, Wallaschofski H, Renner C, Uhl E et al (2016) Neuroendocrine disturbances one to five or more years after traumatic brain injury and aneurysmal subarachnoid hemorrhage: data from the German Database on hypopituitarism. J Neurotrauma 33(16):1544–1553. Google Scholar
  73. 73.
    Nemes O, Kovacs N, Czeiter E, Kenyeres P, Tarjanyi Z, Bajnok L, Buki A, Doczi T, Mezosi E (2015) Predictors of post-traumatic pituitary failure during long-term follow-up. Hormones (Athens) 14(3):383–391. Google Scholar
  74. 74.
    Baxter D, Sharp DJ, Feeney C, Papadopoulou D, Ham TE, Jilka S, Hellyer PJ, Patel MC, Bennett AN, Mistlin A et al (2013) Pituitary dysfunction after blast traumatic brain injury: The UK BIOSAP study. Ann Neurol 74(4):527–536. Google Scholar
  75. 75.
    Kokshoorn NE, Smit JW, Nieuwlaat WA, Tiemensma J, Bisschop PH, Groote-Veldman R, Roelfsema F, Franken AA, Wassenaar MJ, Biermasz NR et al (2011) Low prevalence of hypopituitarism after traumatic brain injury: a multicenter study. Eur J Endocrinol 165(2):225–231. Google Scholar
  76. 76.
    Berg C, Oeffner A, Schumm-Draeger PM, Badorrek F, Brabant G, Gerbert B, Bornstein S, Zimmermann A, Weber M, Broecker-Preuss M et al (2010) Prevalence of anterior pituitary dysfunction in patients following traumatic brain injury in a German multi-centre screening program. Exp Clin Endocrinol Diabetes 118(2):139–144. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EndocrinologyYeditepe University, Faculty of Medicine, Kosuyolu HospitalIstanbulTurkey

Personalised recommendations