Advertisement

Pituitary

pp 1–11 | Cite as

Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells

  • Federico GattoEmail author
  • Marica Arvigo
  • Jessica Amarù
  • Claudia Campana
  • Francesco Cocchiara
  • Giulia Graziani
  • Eleonora Bruzzone
  • Massimo Giusti
  • Mara Boschetti
  • Diego Ferone
Article
  • 98 Downloads

Abstract

Background

Pasireotide is a second-generation somatostatin (SRIF) receptor ligand (SRL), approved for medical treatment of acromegaly and Cushing’s disease (CD). The molecule is a stable cyclohexapeptide synthetized based on SRIF structure. Differently from first-generation SRLs (e.g. octreotide), preferentially binding somatostatin receptor (SST) subtype 2 (SST2), pasireotide has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Interestingly, early preclinical studies demonstrated that pasireotide shows distinct functional properties compared to SRIF and first-generation SRLs when binding SSTs.

Methods

We aimed to highlight the differential receptor-targeted action of pasireotide in the treatment of somatotroph and corticotroph adenomas, throughout the critical revision of preclinical studies carried out on acromegaly and CD models.

Results

Different authors demonstrated that the antisecretory effect of pasireotide in somatotroph adenoma cell cultures is comparable to that of the SST2-preferential agonist octreotide. Some reports even show a direct correlation between SST2 mRNA expression and GH reduction after pasireotide treatment, thus laying for a predominant role of SST2 in driving pasireotide efficacy in somatotropinomas in vitro. On the other hand, the inhibitory effect of pasireotide on ACTH secretion in corticotropinoma cells seems to be mainly mediated by SST5. Indeed, most reports show a higher potency and efficacy of pasireotide compared to SST2 preferential agonists, while functional studies confirm the pivotal role of SST5 targeting in corticotroph cells.

Conclusions

The analysis of preclinical studies carried out in somatotroph and corticoph adenomas points out that pasireotide shows a cell-specific activity, exerting its biological effects via different SSTs in the different adenoma histotypes.

Keywords

Pasireotide GH-secreting ACTH-secreting Pituitary adenomas Primary cultures 

Notes

Acknowledgements

Financial support for medical editorial assistance was provided by Novartis Pharma AG. We thank Ray Hill, an independent medical writer who provided English-language editing and journal styling prior to submission on behalf of Springer Healthcare Communications.

Compliance with ethical standards

Conflict of interest

FG has been a speaker for Novartis and has participated on advisory boards of Novartis, AMCo Ltd, and IONIS Pharmaceuticals. DF has been a speaker for and participated on advisory boards and received research grants from Novartis, Ipsen and Pfizer. The other Authors have no conflicts of interest to declare.

Research involving human and animal rights

This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Reichlin S (1983) Somatostatin. N Engl J Med 309(24):1495–1501.  https://doi.org/10.1056/NEJM198312153092406 CrossRefPubMedGoogle Scholar
  2. 2.
    Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20(3):157–198.  https://doi.org/10.1006/frne.1999.0183 CrossRefPubMedGoogle Scholar
  3. 3.
    Duran-Prado M, Gahete MD, Martinez-Fuentes AJ, Luque RM, Quintero A, Webb SM, Benito-Lopez P, Leal A, Schulz S, Gracia-Navarro F, Malagon MM, Castano JP (2009) Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J Clin Endocrinol Metab 94(7):2634–2643.  https://doi.org/10.1210/jc.2008-2564 CrossRefPubMedGoogle Scholar
  4. 4.
    Theodoropoulou M, Stalla GK (2013) Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 34(3):228–252.  https://doi.org/10.1016/j.yfrne.2013.07.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Gunther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castano JP, Wester HJ, Culler M, Melmed S, Schulz S (2018) International union of basic and clinical pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev 70(4):763–835.  https://doi.org/10.1124/pr.117.015388 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ben-Shlomo A, Liu NA, Melmed S (2017) Somatostatin and dopamine receptor regulation of pituitary somatotroph adenomas. Pituitary 20(1):93–99.  https://doi.org/10.1007/s11102-016-0778-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Cervia D, Bagnoli P (2007) An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 116(2):322–341.  https://doi.org/10.1016/j.pharmthera.2007.06.010 CrossRefPubMedGoogle Scholar
  8. 8.
    Ben-Shlomo A, Melmed S (2010) Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 21(3):123–133.  https://doi.org/10.1016/j.tem.2009.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cuevas-Ramos D, Fleseriu M (2014) Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol 52(3):R223–R240.  https://doi.org/10.1530/JME-14-0011 CrossRefPubMedGoogle Scholar
  10. 10.
    Oberg K, Lamberts SW (2016) Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: past, present and future. Endocr Relat Cancer 23(12):R551–R566.  https://doi.org/10.1530/ERC-16-0151 CrossRefPubMedGoogle Scholar
  11. 11.
    Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ (1982) Pless: SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31(11):1133–1140CrossRefGoogle Scholar
  12. 12.
    Ben-Shlomo A, Melmed S (2008) Somatostatin agonists for treatment of acromegaly. Mol Cell Endocrinol 286(1–2):192–198.  https://doi.org/10.1016/j.mce.2007.11.024 CrossRefPubMedGoogle Scholar
  13. 13.
    Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA, Endocrine S (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951.  https://doi.org/10.1210/jc.2014-2700 CrossRefPubMedGoogle Scholar
  14. 14.
    Melmed S, Bronstein MD, Chanson P, Klibanski A, Casanueva FF, Wass JAH, Strasburger CJ, Luger A, Clemmons DR, Giustina A (2018) A Consensus Statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol 14(9):552–561.  https://doi.org/10.1038/s41574-018-0058-5 CrossRefPubMedGoogle Scholar
  15. 15.
    van der Pas R, Feelders RA, Gatto F, de Bruin C, Pereira AM, van Koetsveld PM, Sprij-Mooij DM, Waaijers AM, Dogan F, Schulz S, Kros JM, Lamberts SW, Hofland LJ (2013) Preoperative normalization of cortisol levels in Cushing’s disease after medical treatment: consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J Clin Endocrinol Metab 98(12):E1880–E1890.  https://doi.org/10.1210/jc.2013-1987 CrossRefPubMedGoogle Scholar
  16. 16.
    Hofland LJ, Lamberts SW (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24(1):28–47.  https://doi.org/10.1210/er.2000-0001 CrossRefPubMedGoogle Scholar
  17. 17.
    Ferone D, Gatto F, Arvigo M, Resmini E, Boschetti M, Teti C, Esposito D, Minuto F (2009) The clinical-molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J Mol Endocrinol 42(5):361–370.  https://doi.org/10.1677/JME-08-0162 CrossRefPubMedGoogle Scholar
  18. 18.
    Cuevas-Ramos D, Fleseriu M (2016) Pasireotide: a novel treatment for patients with acromegaly. Drug Des Dev Ther 10:227–239.  https://doi.org/10.2147/DDDT.S77999 CrossRefGoogle Scholar
  19. 19.
    Lesche S, Lehmann D, Nagel F, Schmid HA, Schulz S (2009) Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J Clin Endocrinol Metab 94(2):654–661.  https://doi.org/10.1210/jc.2008-1919 CrossRefPubMedGoogle Scholar
  20. 20.
    Kao YJ, Ghosh M, Schonbrunn A (2011) Ligand-dependent mechanisms of sst2A receptor trafficking: role of site-specific phosphorylation and receptor activation in the actions of biased somatostatin agonists. Mol Endocrinol 25(6):1040–1054.  https://doi.org/10.1210/me.2010-0398 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cescato R, Loesch KA, Waser B, Macke HR, Rivier JE, Reubi JC, Schonbrunn A (2010) Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways. Mol Endocrinol 24(1):240–249.  https://doi.org/10.1210/me.2009-0321 CrossRefPubMedGoogle Scholar
  22. 22.
    Poll F, Lehmann D, Illing S, Ginj M, Jacobs S, Lupp A, Stumm R, Schulz S (2010) Pasireotide and octreotide stimulate distinct patterns of sst2A somatostatin receptor phosphorylation. Mol Endocrinol 24(2):436–446.  https://doi.org/10.1210/me.2009-0315 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lehmann A, Kliewer A, Schutz D, Nagel F, Stumm R, Schulz S (2014) Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor. Mol Cell Endocrinol 387(1–2):44–51.  https://doi.org/10.1016/j.mce.2014.02.009 CrossRefPubMedGoogle Scholar
  24. 24.
    Colao A, Bronstein MD, Freda P, Gu F, Shen CC, Gadelha M, Fleseriu M, van der Lely AJ, Farrall AJ, Hermosillo Resendiz K, Ruffin M, Chen Y, Sheppard M, Pasireotide CSG (2014) Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab 99(3):791–799.  https://doi.org/10.1210/jc.2013-2480 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stalla GK, Brockmeier SJ, Renner U, Newton C, Buchfelder M, Stalla J, Muller OA (1994) Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur J Endocrinol 130(2):125–131CrossRefGoogle Scholar
  26. 26.
    Lamberts SW, Uitterlinden P, Klijn JM (1989) The effect of the long-acting somatostatin analogue SMS 201–995 on ACTH secretion in Nelson’s syndrome and Cushing’s disease. Acta Endocrinol 120(6):760–766CrossRefGoogle Scholar
  27. 27.
    de Herder WW, Lamberts SW (1996) Is there a role for somatostatin and its analogs in Cushing’s syndrome? Metabolism 45(8 Suppl 1):83–85CrossRefGoogle Scholar
  28. 28.
    Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Schoenherr U, Mills D, Salgado LR, Biller BM, Pasireotide BSG (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366(10):914–924.  https://doi.org/10.1056/NEJMoa1105743 CrossRefPubMedGoogle Scholar
  29. 29.
    Feelders RA, Hofland LJ (2013) Medical treatment of Cushing’s disease. J Clin Endocrinol Metab 98(2):425–438.  https://doi.org/10.1210/jc.2012-3126 CrossRefPubMedGoogle Scholar
  30. 30.
    Pivonello R, De Leo M, Cozzolino A, Colao A (2015) The treatment of Cushing’s disease. Endocr Rev 36(4):385–486.  https://doi.org/10.1210/er.2013-1048 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 146(5):707–716CrossRefGoogle Scholar
  32. 32.
    Murray RD, Kim K, Ren SG, Lewis I, Weckbecker G, Bruns C, Melmed S (2004) The novel somatostatin ligand (SOM230) regulates human and rat anterior pituitary hormone secretion. J Clin Endocrinol Metab 89(6):3027–3032.  https://doi.org/10.1210/jc.2003-031319 CrossRefPubMedGoogle Scholar
  33. 33.
    Hofland LJ, van der Hoek J, van Koetsveld PM, de Herder WW, Waaijers M, Sprij-Mooij D, Bruns C, Weckbecker G, Feelders R, van der Lely AJ, Beckers A, Lamberts SW (2004) The novel somatostatin analog SOM230 is a potent inhibitor of hormone release by growth hormone- and prolactin-secreting pituitary adenomas in vitro. J Clin Endocrinol Metab 89(4):1577–1585.  https://doi.org/10.1210/jc.2003-031344 CrossRefPubMedGoogle Scholar
  34. 34.
    Ibanez-Costa A, Rivero-Cortes E, Vazquez-Borrego MC, Gahete MD, Jimenez-Reina L, Venegas-Moreno E, de la Riva A, Arraez MA, Gonzalez-Molero I, Schmid HA, Maraver-Selfa S, Gavilan-Villarejo I, Garcia-Arnes JA, Japon MA, Soto-Moreno A, Galvez MA, Luque RM, Castano JP (2016) Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro. J Endocrinol 231(2):135–145.  https://doi.org/10.1530/JOE-16-0332 CrossRefPubMedGoogle Scholar
  35. 35.
    Gatto F, Feelders RA, Franck SE, van Koetsveld PM, Dogan F, Kros JM, Neggers S, van der Lely AJ, Lamberts SWJ, Ferone D, Hofland LJ (2017) In vitro head-to-head comparison between octreotide and pasireotide in GH-secreting pituitary adenomas. J Clin Endocrinol Metab 102(6):2009–2018.  https://doi.org/10.1210/jc.2017-00135 CrossRefPubMedGoogle Scholar
  36. 36.
    Gatto F, Hofland LJ (2011) The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr Relat Cancer 18(6):R233–R251.  https://doi.org/10.1530/ERC-10-0334 CrossRefPubMedGoogle Scholar
  37. 37.
    van der Hoek J, Waaijers M, van Koetsveld PM, Sprij-Mooij D, Feelders RA, Schmid HA, Schoeffter P, Hoyer D, Cervia D, Taylor JE, Culler MD, Lamberts SW, Hofland LJ (2005) Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 289(2):E278–E287.  https://doi.org/10.1152/ajpendo.00004.2005 CrossRefPubMedGoogle Scholar
  38. 38.
    de Bruin C, Feelders RA, Waaijers AM, van Koetsveld PM, Sprij-Mooij DM, Lamberts SW, Hofland LJ (2009) Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J Mol Endocrinol 42(1):47–56.  https://doi.org/10.1677/JME-08-0110 CrossRefPubMedGoogle Scholar
  39. 39.
    Park S, Kamegai J, Kineman RD (2003) Role of glucocorticoids in the regulation of pituitary somatostatin receptor subtype (sst1–sst5) mRNA levels: evidence for direct and somatostatin-mediated effects. Neuroendocrinology 78(3):163–175.  https://doi.org/10.1159/000072798 CrossRefPubMedGoogle Scholar
  40. 40.
    Hofland LJ, van der Hoek J, Feelders R, van Aken MO, van Koetsveld PM, Waaijers M, Sprij-Mooij D, Bruns C, Weckbecker G, de Herder WW, Beckers A, Lamberts SW (2005) The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol 152(4):645–654.  https://doi.org/10.1530/eje.1.01876 CrossRefPubMedGoogle Scholar
  41. 41.
    Batista DL, Zhang X, Gejman R, Ansell PJ, Zhou Y, Johnson SA, Swearingen B, Hedley-Whyte ET, Stratakis CA, Klibanski A (2006) The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J Clin Endocrinol Metab 91(11):4482–4488.  https://doi.org/10.1210/jc.2006-1245 CrossRefPubMedGoogle Scholar
  42. 42.
    Oakley RH, Revollo J, Cidlowski JA (2012) Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors. Proc Natl Acad Sci USA 109(43):17591–17596.  https://doi.org/10.1073/pnas.1209411109 CrossRefPubMedGoogle Scholar
  43. 43.
    Ben-Shlomo A, Schmid H, Wawrowsky K, Pichurin O, Hubina E, Chesnokova V, Liu NA, Culler M, Melmed S (2009) Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 94(11):4342–4350.  https://doi.org/10.1210/jc.2009-1311 CrossRefPubMedGoogle Scholar
  44. 44.
    Castillo V, Theodoropoulou M, Stalla J, Gallelli MF, Cabrera-Blatter MF, Haedo MR, Labeur M, Schmid HA, Stalla GK, Arzt E (2011) Effect of SOM230 (pasireotide) on corticotropic cells: action in dogs with Cushing’s disease. Neuroendocrinology 94(2):124–136.  https://doi.org/10.1159/000327429 CrossRefPubMedGoogle Scholar
  45. 45.
    Murasawa S, Kageyama K, Sugiyama A, Ishigame N, Niioka K, Suda T, Daimon M (2014) Inhibitory effects of SOM230 on adrenocorticotropic hormone production and corticotroph tumor cell proliferation in vitro and in vivo. Mol Cell Endocrinol 394(1–2):37–46.  https://doi.org/10.1016/j.mce.2014.07.001 CrossRefPubMedGoogle Scholar
  46. 46.
    Lamberts SW, de Lange SA, Stefanko SZ (1982) Adrenocorticotropin-secreting pituitary adenomas originate from the anterior or the intermediate lobe in Cushing’s disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab 54(2):286–291.  https://doi.org/10.1210/jcem-54-2-286 CrossRefPubMedGoogle Scholar
  47. 47.
    Hayashi K, Inoshita N, Kawaguchi K, Ibrahim Ardisasmita A, Suzuki H, Fukuhara N, Okada M, Nishioka H, Takeuchi Y, Komada M, Takeshita A, Yamada S (2016) The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur J Endocrinol 174(2):213–226.  https://doi.org/10.1530/EJE-15-0689 CrossRefPubMedGoogle Scholar
  48. 48.
    Peverelli E, Giardino E, Treppiedi D, Vitali E, Cambiaghi V, Locatelli M, Lasio GB, Spada A, Lania AG, Mantovani G (2014) Filamin A (FLNA) plays an essential role in somatostatin receptor 2 (SST2) signaling and stabilization after agonist stimulation in human and rat somatotroph tumor cells. Endocrinology 155(8):2932–2941.  https://doi.org/10.1210/en.2014-1063 CrossRefPubMedGoogle Scholar
  49. 49.
    Gatto F, Feelders R, van der Pas R, Kros JM, Dogan F, van Koetsveld PM, van der Lelij AJ, Neggers SJ, Minuto F, de Herder W, Lamberts SW, Ferone D, Hofland LJ (2013) beta-Arrestin 1 and 2 and G protein-coupled receptor kinase 2 expression in pituitary adenomas: role in the regulation of response to somatostatin analogue treatment in patients with acromegaly. Endocrinology 154(12):4715–4725.  https://doi.org/10.1210/en.2013-1672 CrossRefPubMedGoogle Scholar
  50. 50.
    Iacovazzo D, Carlsen E, Lugli F, Chiloiro S, Piacentini S, Bianchi A, Giampietro A, Mormando M, Clear AJ, Doglietto F, Anile C, Maira G, Lauriola L, Rindi G, Roncaroli F, Pontecorvi A, Korbonits M, De Marinis L (2016) Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol 174(2):241–250.  https://doi.org/10.1530/EJE-15-0832 CrossRefPubMedGoogle Scholar
  51. 51.
    Cuevas-Ramos D, Carmichael JD, Cooper O, Bonert VS, Gertych A, Mamelak AN, Melmed S (2015) A structural and functional acromegaly classification. J Clin Endocrinol Metab 100(1):122–131.  https://doi.org/10.1210/jc.2014-2468 CrossRefPubMedGoogle Scholar
  52. 52.
    Papotti M, Bongiovanni M, Volante M, Allia E, Landolfi S, Helboe L, Schindler M, Cole SL, Bussolati G (2002) Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 440(5):461–475.  https://doi.org/10.1007/s00428-002-0609-x CrossRefPubMedGoogle Scholar
  53. 53.
    Wildemberg LE, Neto LV, Costa DF, Nasciuti LE, Takiya CM, Alves LM, Rebora A, Minuto F, Ferone D, Gadelha MR (2013) Low somatostatin receptor subtype 2, but not dopamine receptor subtype 2 expression predicts the lack of biochemical response of somatotropinomas to treatment with somatostatin analogs. J Endocrinol Invest 36(1):38–43.  https://doi.org/10.3275/8305 CrossRefPubMedGoogle Scholar
  54. 54.
    Casar-Borota O, Heck A, Schulz S, Nesland JM, Ramm-Pettersen J, Lekva T, Alafuzoff I, Bollerslev J (2013) Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies was reduced by octreotide and correlated with the acute and long-term effects of octreotide. J Clin Endocrinol Metab 98(11):E1730–E1739.  https://doi.org/10.1210/jc.2013-2145 CrossRefPubMedGoogle Scholar
  55. 55.
    Gatto F, Feelders RA, van der Pas R, Kros JM, Waaijers M, Sprij-Mooij D, Neggers SJ, van der Lelij AJ, Minuto F, Lamberts SW, de Herder WW, Ferone D, Hofland LJ (2013) Immunoreactivity score using an anti-sst2A receptor monoclonal antibody strongly predicts the biochemical response to adjuvant treatment with somatostatin analogs in acromegaly. J Clin Endocrinol Metab 98(1):E66–E71.  https://doi.org/10.1210/jc.2012-2609 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Federico Gatto
    • 1
    Email author return OK on get
  • Marica Arvigo
    • 2
  • Jessica Amarù
    • 2
  • Claudia Campana
    • 2
  • Francesco Cocchiara
    • 2
  • Giulia Graziani
    • 2
  • Eleonora Bruzzone
    • 2
  • Massimo Giusti
    • 1
    • 2
  • Mara Boschetti
    • 1
    • 2
  • Diego Ferone
    • 1
    • 2
  1. 1.Endocrinology Unit, Department of Internal MedicinePoliclinico San MartinoGenoaItaly
  2. 2.University of GenoaGenoaItaly

Personalised recommendations