, Volume 21, Issue 4, pp 347–354 | Cite as

Clinicopathological significance of baseline T2-weighted signal intensity in functional pituitary adenomas

  • Sema Ciftci DogansenEmail author
  • Gulsah Yenidunya Yalin
  • Seher Tanrikulu
  • Sakin Tekin
  • Nihan Nizam
  • Bilge Bilgic
  • Serra Sencer
  • Sema Yarman



To assess baseline T2-weighted signal intensity (T2-WSI) of functional pituitary adenomas (FPA), and to investigate the relationship of baseline T2-WSI with clinical features, histopathological granulation patterns, and response to treatment in patients with acromegaly, prolactinoma and Cushing’s disease (CD).


Somatotroph adenomas (n = 87), prolactinomas (n = 78) and corticotroph adenomas (n = 29) were included in the study. Baseline T2-WSI findings (grouped as hypo-, iso- and hyperintense) were compared with hormone levels, tumor diameter, granulation patterns and response to treatment.


Somatotroph adenomas were mostly hypointense (53%), prolactinomas were dominantly hyperintense (55%), and corticotroph adenomas were generally hyperintense (45%). Hyperintense somatotroph adenomas were larger in size with sparsely granulated pattern and tumor shrinkage rate was lower after somatostatin analogues (SSA) (p = 0.007, p = 0.035, p = 0.029, respectively). T2 hypointensity was related with higher baseline IGF-1% ULN (upper limit of normal) levels and a better response to SSA treatment (p = 0.02, p = 0.045, respectively). In female prolactinomas, hyperintensity was correlated with a smaller adenoma diameter (p = 0.001). Hypointense female prolactinomas were related to younger age at diagnosis, higher baseline PRL levels and dopamine agonist (DA) resistance (p = 0.009, p = 0.022, p < 0.001, respectively). Hyperintense corticotroph adenomas were related to larger adenoma size and sparsely granulated pattern (p = 0.04, p = 0.017, respectively). There was no significant difference in the recurrence with T2WSI in CD.


Baseline hypointense somatotroph adenomas show a better response to SSA, whereas hypointensity was related to DA resistance in female prolactinomas.


T2-weighted signal intensity Somatotroph adenoma Prolactinoma Corticotroph adenoma Granulation pattern Dopamine agonist resistance 



This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bonneville JF, Bonneville F, Cattin F (2005) Magnetic resonance imaging of pituitary adenomas. Eur Radiol 15(3):543–548CrossRefPubMedGoogle Scholar
  2. 2.
    Bonneville JF (2016) Magnetic resonance imaging of pituitary tumors. Front Horm Res 45:97–120CrossRefPubMedGoogle Scholar
  3. 3.
    Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T, Miyamoto T (2003) Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228(2):533–538CrossRefPubMedGoogle Scholar
  4. 4.
    Puig-Domingo M, Resmini E, Gomez-Anson B, Nicolau J, Mora M, Palomera E, Martí C, Halperin I, Webb SM (2010) Magnetic resonance imaging as a predictor of response to somatostatin analogs in acromegaly after surgical failure. J Clin Endocrinol Metab 95(11):4973–4978CrossRefPubMedGoogle Scholar
  5. 5.
    Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, Ramm-Pettersen J, Bollerslev J (2012) Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol 77:72–78CrossRefGoogle Scholar
  6. 6.
    Potorac I, Petrossians P, Daly AF, Schillo F, Slama CB, Nagi S, Sahnoun M, Brue T, Girard N, Chanson P, Nasser G, Caron P, Bonneville F, Raverot G, Lapras V, Cotton F, Delemer B, Higel B, Boulin A, Gaillard S, Luca F, Goichot B, Dietemann JL, Beckers A, Bonneville JF (2015) Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer 22(2):169–177CrossRefPubMedGoogle Scholar
  7. 7.
    Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, Castinetti F, Devuyst F, Jaffrain-Rea ML, Briet C, Luca F, Lapoirie M, Zoicas F, Simoneau I, Diallo AM, Muhammad A, Kelestimur F, Nazzari E, Centeno RG, Webb SM, Nunes ML, Hana V, Pascal-Vigneron V, Ilovayskaya I, Nasybullina F, Achir S, Ferone D, Neggers SJ, Delemer B, Petit JM, Schöfl C, Raverot G, Goichot B, Rodien P, Corvilain B, Brue T, Schillo F, Tshibanda L, Maiter D, Bonneville JF, Beckers A (2016) T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer 23(11):871–881CrossRefPubMedGoogle Scholar
  8. 8.
    Shen M, Zhang Q, Liu W, Wang M, Zhu J, Ma Z, He W, Li S, Shou X, Li Y, Zhang Z, Ye H, He M, Lu B, Yao Z, Lu Y, Qiao N, Ye Z, Zhang Y, Yang Y, Zhao Y, Wang Y (2016) Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology 58(11):1057–1065CrossRefPubMedGoogle Scholar
  9. 9.
    Heck A, Emblem KE, Casar-Borota O, Bollerslev J, Ringstad G (2016) Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine 52(2):333–343CrossRefPubMedGoogle Scholar
  10. 10.
    Heck A, Emblem KE, Casar-Borota O, Ringstad G, Bollerslev J (2016) MRI T2 characteristics in somatotroph adenomas following somatostatin analog treatment in acromegaly. Endocrine 53(1):327–330CrossRefPubMedGoogle Scholar
  11. 11.
    Bakhtiar Y, Hanaya R, Tokimura H, Hirano H, Oyoshi T, Fujio S, Bohara M, Arita K (2014) Geometric survey on magnetic resonance imaging of growth hormone producing pituitary adenoma. Pituitary 17(2):142–149CrossRefPubMedGoogle Scholar
  12. 12.
    Kreutz J, Vroonen L, Cattin F, Petrossians P, Thiry A, Rostomyan L, Tshibanda L, Beckers A, Bonneville JF (2015) Intensity of prolactinoma on T2-weighted magnetic resonance imaging: towards another gender difference. Neuroradiology 57(7):679–684CrossRefPubMedGoogle Scholar
  13. 13.
    Kurosaki M, Kambe A, Watanabe T, Fujii S, Ogawa T (2015) Serial 3 T magnetic resonance imaging during cabergoline treatment of macroprolactinomas. Neurol Res 37(4):341–346CrossRefPubMedGoogle Scholar
  14. 14.
    Lundin P, Bergstro¨m K, Nyman R, Lundberg PO, Muhr C (1992) Macroprolactinomas: serial MR imaging in long-term bromocriptine therapy. Am J Neuroradiol 13:1279–1291PubMedGoogle Scholar
  15. 15.
    Levine SN, Ishaq S, Nanda A, Wilson JD, Gonzalez-Toledo E (2013) Occurence of extensive amyloid deposits in a prolactin-secreting pituitary macroadenoma: a radiologic-pathologic correlation. Ann Diagn Pathol 7:361–366CrossRefGoogle Scholar
  16. 16.
    Lundin P, Nyman R, Burman P, Lundberg PO, Muhr C (1992) MRI of pituitary macroadenomas with reference to hormonal activity. Neuroradiology 34(1):43–51CrossRefPubMedGoogle Scholar
  17. 17.
    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93(5):1526–1540CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, Wass JA (2011) Endocrine Society. Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:273–288CrossRefPubMedGoogle Scholar
  19. 19.
    Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA, Endocrine Society (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951CrossRefPubMedGoogle Scholar
  20. 20.
    Asa SL (2011) Tumors of the pituitary gland. Armed Forces Institute of Pathology, Washington, DCGoogle Scholar
  21. 21.
    Dogansen SC, Selcukbiricik OS, Tanrikulu S, Yarman S (2016) Withdrawal of dopamine agonist therapy in prolactinomas: in which patients when? Pituitary 19(3):303–310CrossRefPubMedGoogle Scholar
  22. 22.
    Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A, Endocrine Society (2015) Treatment of Cushing’s syndrome: an endcorine society clinical practice guideline. J Clin Endocrinol Metab 100(8):2807–2831CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lindsay JR, Oldfield EH, Stratakis CA, Nieman LK (2011) The postoperative basal cortisol and CRH tests for prediction of long-term remission from Cushing’s disease after transsphenoidal surgery. J Clin Endocrinol Metab 96(7):2057–2064CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Boulby P (2004) T2: the transverse relaxation time. In: Tofts P (ed) Quantitative MRI of the brain-measuring changes caused by disease, vol 1. Wiley, Chichester, pp 143–201Google Scholar
  25. 25.
    Kamman RL, Go KG, Brouwer W, Berendsen HJC (1988) Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 6:265–274CrossRefPubMedGoogle Scholar
  26. 26.
    Potorac I, Petrossians P, Schillo F, Ben slama C, Nagi S, Sahnoun M, Brue T, Chanson P, Nasser G, Caron P, Bonneville F, Raverot G, Lapras V, Coton F, Delemer B, Higel B, Boulin A, Gaillard S, Goichot B, Dietemann JL, Kreutz J, Tshibanda L, Beckers A, Bonneville JF (2013) Correlations significatives de l’aspect en IRM haute resolution des adénomes hypophysaires à GH avant traitement. Ann Endocrinol 74:259–260CrossRefGoogle Scholar
  27. 27.
    Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol 76(1):96–102CrossRefGoogle Scholar
  28. 28.
    Colao A, Sarno AD, Cappabianca P, Briganti F, Pivonello R, Somma CD, Faggiano A (2003) Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur J Endocrinol 148:325–331CrossRefPubMedGoogle Scholar
  29. 29.
    Fideleff HL, Boquete HR, Suárez MG, Azaretzky M (2009) Prolactinoma in children and adolescents. Horm Res 72(4):197–205CrossRefPubMedGoogle Scholar
  30. 30.
    Nishioka H, Haraoka J, Akada K (2003) Growth potential of prolactinomas in men: is it really different from women? Surg Neurol 59:386–390CrossRefPubMedGoogle Scholar
  31. 31.
    Kitamura K, Nakayama T, Ohata K, Wakasa K, Miki Y (2011) Computed tomography and magnetic resonance imaging appearance of prolactinoma with spheroid-type amyloid deposition. J Comput Assist Tomogr 35(2):313–315CrossRefPubMedGoogle Scholar
  32. 32.
    Asa SL, Ezzat S (2009) The pathogenesis of pituitary tumors. Annu Rev Pathol 4:97–126CrossRefPubMedGoogle Scholar
  33. 33.
    Saeger W, Honegger J, Theodoropoulou M, Knappe UJ, Schöfl C, Petersenn S, Buslei R (2016) Clinical Impact of the current WHO classification of pituitary adenomas. Endocr Pathol 27(2):104–114CrossRefPubMedGoogle Scholar
  34. 34.
    Cazabat L, Dupuy M, Boulin A, Bernier M, Baussart B, Foubert L, Raffin-Sanson ML, Caron P, Bertherat J, Gaillard S (2014) Silent, but not unseen: multimicrocystic aspect on T2-weighted MRI in silent corticotroph adenomas. Clin Endocrinol 81(4):566–572CrossRefGoogle Scholar
  35. 35.
    Lloyd RV, Osamura RY, Klöppel G, Rosai J (eds) (2017) World Health Organization classification of tumours of endocrine organs, 4th edn. IARC Press, LyonGoogle Scholar
  36. 36.
    Syro LV, Rotondo F, Cusimano MD, Di Ieva A, Horvath E, Restrepo LM, Wong M, Killinger DW, Smyth H, Kovacs K (2015) Current status on histological classification in Cushing’s disease. Pituitary 18(2):217–224CrossRefPubMedGoogle Scholar
  37. 37.
    Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22(4):443–453CrossRefPubMedGoogle Scholar
  38. 38.
    Bochicchio D, Losa M, Buchfelder M (1995) Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s disease survey group. J Clin Endocrinol Metab 80:3114–3120PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sema Ciftci Dogansen
    • 1
    Email author
  • Gulsah Yenidunya Yalin
    • 1
  • Seher Tanrikulu
    • 1
  • Sakin Tekin
    • 1
  • Nihan Nizam
    • 1
  • Bilge Bilgic
    • 2
  • Serra Sencer
    • 3
  • Sema Yarman
    • 1
  1. 1.Division of Endocrinology and Metabolism, Capa, Department of Internal Medicine, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
  2. 2.Department of Pathology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
  3. 3.Department of Neuroradiology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations