, Volume 18, Issue 6, pp 916–923 | Cite as

Prediction of therapy response in acromegalic patients under pegvisomant therapy within the German ACROSTUDY cohort

  • Caroline SieversEmail author
  • Dorothee M. Baur
  • Anja Schwanke
  • Michael Buchfelder
  • Michael Droste
  • Klaus Mann
  • Günter K. Stalla



This study aimed at investigating predicting factors for therapy response under growth hormone receptor antagonist therapy with a focus on subjective and patient-oriented measures.


Observational, multicenter nested-cohort study including 271 selected patients with the diagnosis of acromegaly and a minimum of one-year follow-up period within the German ACROSTUDY cohort (total cohort: n = 514). Outcome measures were the change of the biomarker IGF-1 (IGF-1 change and IGF-1 normalisation) between baseline and after 1 year of pegvisomant therapy (12 ± 6 months). Main predictors were patient-assessed subjective measures according to the Patient-Assessed Acromegaly Symptom Questionnaire (PASQ) in conjugation with age, gender, BMI, max. dosage of pegvisomant at follow-up and IGF-1 before the start of pegvisomant therapy.


The mean age of the study population was 51.2 (13.9) years and the mean BMI was 29.5 (5.1) kg/m2. In adjusted analyses, none of the individual perceived health (PASQ) scores, but age, BMI and IGF-1 at baseline were predictive for an IGF-1 decrease after 1 year of pegvisomant therapy and BMI and IGF-1, but equally none of the PASQ items, were predicting IGF-1 normalisation.


Age, BMI and baseline IGF-1 but not subjective perceived health measures predict therapy response under second line medical therapy with pegvisomant.


Acromegaly Health-related quality of life Pegvisomant Growth hormone IGF-1 



We gratefully acknowledge the excellent support and critical discussion of the ACROSTUDY board members. Moreover, the authors thank all the investigators and study nurses of the individual centres for contributing data to the ACROSTUDY. ACROSTUDY is sponsored by Pfizer Inc.

Compliance with ethical standards

Conflict of interset

M. D., M. B., K. M., and G. K. S. are members of the Scientific ACROSTUDY German Board, which is sponsored by Pfizer GmbH, Germany. C. S. has received consultant fees as a member of ACROSTUDY Steering Committee. A. S. is currently employed by Pfizer GmbH Germany. K. M. is a member of the HNR board, which is funded by the Heinz Nixdorf Stiftung, Essen. C. S., M. B., K. M. and G. K. S. received German Pfizer Grants for other projects as well as lecture fees from Pfizer. D. M. B. has nothing to declare.


  1. 1.
    Colao A, Lombardi G (1998) Growth-hormone and prolactin excess. Lancet 352(9138):1455–1461CrossRefPubMedGoogle Scholar
  2. 2.
    Holdaway IM (2007) Excess mortality in acromegaly. Horm Res 68(Suppl 5):166–172CrossRefPubMedGoogle Scholar
  3. 3.
    Biermasz NR et al (2004) Decreased quality of life in patients with acromegaly despite long-term cure of growth hormone excess. J Clin Endocrinol Metab 89(11):5369–5376CrossRefPubMedGoogle Scholar
  4. 4.
    Giustina A et al (2010) A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab 95(7):3141–3148CrossRefPubMedGoogle Scholar
  5. 5.
    Melmed S et al (2005) Consensus statement: medical management of acromegaly. Eur J Endocrinol 153(6):737–740CrossRefPubMedGoogle Scholar
  6. 6.
    Melmed S (2006) Medical progress: acromegaly. N Engl J Med 355(24):2558–2573CrossRefPubMedGoogle Scholar
  7. 7.
    Schofl C et al (2013) Long-term outcome in patients with acromegaly: analysis of 1344 patients from the German Acromegaly Register. Eur J Endocrinol 168(1):39–47CrossRefPubMedGoogle Scholar
  8. 8.
    Theodoropoulou M et al (2009) Tumor ZAC1 expression is associated with the response to somatostatin analog therapy in patients with acromegaly. Int J Cancer 125(9):2122–2126CrossRefPubMedGoogle Scholar
  9. 9.
    Petersenn S et al (2009) Age and sex as predictors of biochemical activity in acromegaly: analysis of 1485 patients from the German Acromegaly Register. Clin Endocrinol (Oxf) 71(3):400–405CrossRefGoogle Scholar
  10. 10.
    Gatto F et al (2012) Immunoreactivity score using an anti-sst2A receptor monoclonal antibody strongly predicts the biochemical response to adjuvant treatment with somatostatin analogs in acromegaly. J Clin Endocrinol Metab 98(1):E66–E71CrossRefPubMedGoogle Scholar
  11. 11.
    Theodoropoulou M, Stalla GK (2013) Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 34(3):228–252CrossRefPubMedGoogle Scholar
  12. 12.
    Lampropoulos KI, Samonis G, Nomikos P (2013) Factors influencing the outcome of microsurgical transsphenoidal surgery for pituitary adenomas: a study on 184 patients. Hormones (Athens) 12(2):254–264CrossRefGoogle Scholar
  13. 13.
    Jane JA Jr et al (2011) Endoscopic transsphenoidal surgery for acromegaly: remission using modern criteria, complications, and predictors of outcome. J Clin Endocrinol Metab 96(9):2732–2740CrossRefPubMedGoogle Scholar
  14. 14.
    Poon TL et al (2010) Predictors of outcome following Gamma Knife surgery for acromegaly. J Neurosurg 113(Suppl):149–152PubMedGoogle Scholar
  15. 15.
    Montazeri A (2009) Quality of life data as prognostic indicators of survival in cancer patients: an overview of the literature from 1982 to 2008. Health Qual Life Outcomes 7:102PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    McEwen LN et al (2009) Are health-related quality-of-life and self-rated health associated with mortality? Insights from translating research into action for diabetes (TRIAD). Prim Care Diabetes 3(1):37–42PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Rodriguez-Artalejo F et al (2005) Health-related quality of life as a predictor of hospital readmission and death among patients with heart failure. Arch Intern Med 165(11):1274–1279CrossRefPubMedGoogle Scholar
  18. 18.
    Haring R et al (2011) Self-perceived quality of life predicts mortality risk better than a multi-biomarker panel, but the combination of both does best. BMC Med Res Methodol 11:103PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kacerovsky-Bielesz G et al (2009) Sex-related psychological effects on metabolic control in type 2 diabetes mellitus. Diabetologia 52(5):781–788CrossRefPubMedGoogle Scholar
  20. 20.
    Marzullo P et al (2001) Usefulness of different biochemical markers of the insulin-like growth factor (IGF) family in diagnosing growth hormone excess and deficiency in adults. J Clin Endocrinol Metab 86(7):3001–3008PubMedGoogle Scholar
  21. 21.
    Parkinson C et al (2007) Gender, body weight, disease activity, and previous radiotherapy influence the response to pegvisomant. J Clin Endocrinol Metab 92(1):190–195CrossRefPubMedGoogle Scholar
  22. 22.
    Droste M et al (2014) Therapy of acromegalic patients exacerbated by concomitant type 2 diabetes requires higher pegvisomant doses to normalise IGF1 levels. Eur J Endocrinol 171(1):59–68CrossRefPubMedGoogle Scholar
  23. 23.
    Brue T et al (2009) Which patients with acromegaly are treated with pegvisomant? An overview of methodology and baseline data in ACROSTUDY. Eur J Endocrinol 161(Suppl 1):S11–S17CrossRefPubMedGoogle Scholar
  24. 24.
    van der Lely AJ et al (2012) Long-term safety of pegvisomant in patients with acromegaly: comprehensive review of 1288 subjects in ACROSTUDY. J Clin Endocrinol Metab 97(5):1589–1597CrossRefPubMedGoogle Scholar
  25. 25.
    van der Lely AJ (2004) Justified and unjustified use of growth hormone. Postgrad Med J 80(948):577–580PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Sievers C et al (2010) Change of symptoms and perceived health in acromegalic patients on pegvisomant therapy: a retrospective cohort study within the German Pegvisomant Observational Study (GPOS). Clin Endocrinol (Oxf) 73(1):89–94Google Scholar
  27. 27.
    Schreiber I et al (2007) Treatment of acromegaly with the GH receptor antagonist pegvisomant in clinical practice: safety and efficacy evaluation from the German Pegvisomant Observational Study. Eur J Endocrinol 156(1):75–82CrossRefPubMedGoogle Scholar
  28. 28.
    Strasburger CJ et al (2007) Experience from the German pegvisomant observational study. Horm Res 68(Suppl 5):70–73CrossRefPubMedGoogle Scholar
  29. 29.
    Buchfelder M et al (2009) Pituitary tumor size in acromegaly during pegvisomant treatment: experience from MR re-evaluations of the German Pegvisomant Observational Study. Eur J Endocrinol 161(1):27–35CrossRefPubMedGoogle Scholar
  30. 30.
    Buchfelder M et al (2009) The German ACROSTUDY: past and present. Eur J Endocrinol 161(Suppl 1):S3–S10CrossRefPubMedGoogle Scholar
  31. 31.
    Brabant G et al (2003) Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. Horm Res 60(2):53–60CrossRefPubMedGoogle Scholar
  32. 32.
    Elmlinger MW et al (2004) Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin Chem Lab Med 42(6):654–664CrossRefPubMedGoogle Scholar
  33. 33.
    Bonapart IE et al (2005) The ‘bio-assay’ quality of life might be a better marker of disease activity in acromegalic patients than serum total IGF-I concentrations. Eur J Endocrinol 152(2):217–224CrossRefPubMedGoogle Scholar
  34. 34.
    Vilar L et al (2014) Can we predict long-term remission after somatostatin analog withdrawal in patients with acromegaly? Results from a multicenter prospective trial. Endocrine 46(3):577–584PubMedGoogle Scholar
  35. 35.
    Barbosa EJ et al (2010) Models to predict changes in serum IGF1 and body composition in response to GH replacement therapy in GH-deficient adults. Eur J Endocrinol 162(5):869–878CrossRefPubMedGoogle Scholar
  36. 36.
    Bernabeu I et al (2010) The exon 3-deleted growth hormone receptor is associated with better response to pegvisomant therapy in acromegaly. J Clin Endocrinol Metab 95(1):222–229CrossRefPubMedGoogle Scholar
  37. 37.
    Bernabeu I et al (2013) Pegvisomant and cabergoline combination therapy in acromegaly. Pituitary 16(1):101–108CrossRefPubMedGoogle Scholar
  38. 38.
    Giustina A (2015) Optimal use of pegvisomant in acromegaly: are we getting there? Endocrine 48(1):3–8CrossRefPubMedGoogle Scholar
  39. 39.
    Melmed S et al (2002) Guidelines for acromegaly management. J Clin Endocrinol Metab 87(9):4054–4058CrossRefPubMedGoogle Scholar
  40. 40.
    Roemmler J et al (2010) Influence of pegvisomant on serum ghrelin and leptin levels in acromegalic patients. Eur J Endocrinol 163(5):727–734CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Caroline Sievers
    • 1
    Email author
  • Dorothee M. Baur
    • 2
  • Anja Schwanke
    • 3
  • Michael Buchfelder
    • 4
  • Michael Droste
    • 5
  • Klaus Mann
    • 6
  • Günter K. Stalla
    • 1
  1. 1.Clinical Neuroendocrinology, Clinical Research DepartmentMax Planck Institute of PsychiatryMunichGermany
  2. 2.II Medizinische Klinik und PoliklinikKlinikum rechts der IsarMunichGermany
  3. 3.Endocrine CarePfizer Pharma GmbHBerlinGermany
  4. 4.Department of NeurosurgeryUniversity of Erlangen-NurembergErlangenGermany
  5. 5.Endokrinologische PraxisOldenburgGermany
  6. 6.Department of Endocrinology and MetabolismUniversity of Duisburg-Essen and EndokrinologiezentrumAlter Hof, MunichGermany

Personalised recommendations