, Volume 18, Issue 2, pp 274–278 | Cite as

New potential targets for treatment of Cushing’s disease: epithelial growth factor receptor and cyclin-dependent kinases

  • Hidenori FukuokaEmail author



Cushing’s disease (CD) is caused by adrenocorticotropic hormone (ACTH)-producing pituitary adenomas (ACTHomas). Drug treatment for CD consists of three strategies: pituitary tumor-targeted therapy, steroidogenesis inhibitors, and glucocorticoid receptor antagonists. All of these strategies are under development, and several new drugs have recently been approved for clinical use or are being tested in clinical trials. Pituitary-targeted drugs are a particularly important method in the treatment of CD. Available pituitary tumor-targeted drugs include a dopamine receptor agonist and a somatostatin analog. Since disrupted cell cycle signaling is clearly associated with pathogenesis of ACTHomas which express active forms of epithelial growth factor receptor (EGFR), cyclins, and the catalytic subunit of cyclin-dependent kinases (CDKs), we focused on these molecules as therapeutic targets for ACTHomas.


In this review, a literature search were performed using PubMed with following terms; Cushing’s disease, EGFR, CDKs, cell cycle, and targeted therapy.


Accumulating evidence demonstrates that EGFR and cyclin E-CDK2 may be promising targets for treating ACTHomas.


Cushing’s disease EGFR TKI Cyclin E Targeted therapy 



The Author would like to thank Dr. Shlomo Melmed for special support. This work was supported in part by a Grant-in-Aid for Scientific Research from Japanese Ministry of Education Science, Culture, Sports, Science, and Technology 24790945. We would like to thank Editage ( for English language editing.

Conflict of interest



  1. 1.
    Cushing H (1932) The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp 50:137–195Google Scholar
  2. 2.
    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:1526–1540CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Tritos NA, Biller BM, Swearingen B (2011) Management of Cushing disease. Nat Rev Endocrinol 7:279–289CrossRefPubMedGoogle Scholar
  4. 4.
    Biller BM, Grossman AB, Stewart PM, Melmed S, Bertagna X, Bertherat J, Buchfelder M, Colao A, Hermus AR, Hofland LJ, Klibanski A, Lacroix A, Lindsay JR, Newell-Price J, Nieman LK, Petersenn S, Sonino N, Stalla GK, Swearingen B, Vance ML, Wass JA, Boscaro M (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Fleseriu M, Petersenn S (2012) Medical management of Cushing’s disease: What is the future? Pituitary 15:330–341CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Ben-Shlomo A, Melmed S (2010) Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 21:123–133CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Pivonello R, De Martino MC, Cappabianca P, De Leo M, Faggiano A, Lombardi G, Hofland LJ, Lamberts SW, Colao A (2009) The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 94:223–230CrossRefPubMedGoogle Scholar
  8. 8.
    Godbout A, Manavela M, Danilowicz K, Beauregard H, Bruno OD, Lacroix A (2010) Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol 163:709–716CrossRefPubMedGoogle Scholar
  9. 9.
    Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Schoenherr U, Mills D, Salgado LR, Biller BM (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366:914–924CrossRefPubMedGoogle Scholar
  10. 10.
    Pivonello R, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Trovato A, Hughes G, Salgado LR, Lacroix A, Schopohl J, Biller BM (2014) Pasireotide treatment significantly improves clinical signs and symptoms in patients with Cushing’s disease: results from a Phase III study. Clin Endocrinol (Oxf) 81:408–417CrossRefGoogle Scholar
  11. 11.
    Feelders RA, de Bruin C, Pereira AM, Romijn JA, Netea-Maier RT, Hermus AR, Zelissen PM, van Heerebeek R, de Jong FH, van der Lely AJ, de Herder WW, Hofland LJ, Lamberts SW (2010) Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med 362:1846–1848CrossRefPubMedGoogle Scholar
  12. 12.
    Vilar L, Naves LA, Azevedo MF, Arruda MJ, Arahata CM, Moura ESL, Agra R, Pontes L, Montenegro L, Albuquerque JL, Canadas V (2010) Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary 13:123–129CrossRefPubMedGoogle Scholar
  13. 13.
    Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300CrossRefPubMedGoogle Scholar
  14. 14.
    Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7:257–266CrossRefPubMedGoogle Scholar
  15. 15.
    Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata NS, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C (2013) A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 9:e1003350CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512CrossRefPubMedGoogle Scholar
  17. 17.
    Tichomirowa MA, Lee M, Barlier A, Daly AF, Marinoni I, Jaffrain-Rea ML, Naves LA, Rodien P, Rohmer V, Faucz FR, Caron P, Estour B, Lecomte P, Borson-Chazot F, Penfornis A, Yaneva M, Guitelman M, Castermans E, Verhaege C, Wemeau JL, Tabarin A, Fajardo Montanana C, Delemer B, Kerlan V, Sadoul JL, Cortet Rudelli C, Archambeaud F, Zacharieva S, Theodoropoulou M, Brue T, Enjalbert A, Bours V, Pellegata NS, Beckers A (2012) Cyclin-dependent kinase inhibitor 1B (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocr Relat Cancer 19:233–241CrossRefPubMedGoogle Scholar
  18. 18.
    Harding B, Lemos MC, Reed AA, Walls GV, Jeyabalan J, Bowl MR, Tateossian H, Sullivan N, Hough T, Fraser WD, Ansorge O, Cheeseman MT, Thakker RV (2009) Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia. Endocr Relat Cancer 16:1313–1327CrossRefPubMedGoogle Scholar
  19. 19.
    Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85:721–732CrossRefPubMedGoogle Scholar
  20. 20.
    Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, Sellers RS, Nakayama K, Nakayama KI, Cobrinik D, Zhu L (2010) Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1 ± mice. Nat Genet 42:83–88CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Donangelo I, Gutman S, Horvath E, Kovacs K, Wawrowsky K, Mount M, Melmed S (2006) Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology 147:4781–4791CrossRefPubMedGoogle Scholar
  22. 22.
    Roussel-Gervais A, Bilodeau S, Vallette S, Berthelet F, Lacroix A, Figarella-Branger D, Brue T, Drouin J (2010) Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol 24:1835–1845CrossRefPubMedGoogle Scholar
  23. 23.
    Chien WM, Rabin S, Macias E, Miliani de Marval PL, Garrison K, Orthel J, Rodriguez-Puebla M, Fero ML (2006) Genetic mosaics reveal both cell-autonomous and cell-nonautonomous function of murine p27Kip1. Proc Natl Acad Sci U S A 103:4122–4127CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S, Melmed S (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci U S A 108:8414–8419CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Galderisi U, Jori FP, Giordano A (2003) Cell cycle regulation and neural differentiation. Oncogene 22:5208–5219CrossRefPubMedGoogle Scholar
  26. 26.
    Musat M, Morris DG, Korbonits M, Grossman AB (2010) Cyclins and their related proteins in pituitary tumourigenesis. Mol Cell Endocrinol 326:25–29CrossRefPubMedGoogle Scholar
  27. 27.
    Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25:282–303CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Lievre A, Blons H, Laurent-Puig P (2010) Oncogenic mutations as predictive factors in colorectal cancer. Oncogene 29:3033–3043CrossRefPubMedGoogle Scholar
  29. 29.
    Cooper O, Vlotides G, Fukuoka H, Greene MI, Melmed S (2011) Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer 18:R197–R211CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Theodoropoulou M, Arzberger T, Gruebler Y, Jaffrain-Rea ML, Schlegel J, Schaaf L, Petrangeli E, Losa M, Stalla GK, Pagotto U (2004) Expression of epidermal growth factor receptor in neoplastic pituitary cells: evidence for a role in corticotropinoma cells. J Endocrinol 183:385–394CrossRefPubMedGoogle Scholar
  31. 31.
    Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D, Melmed S (2011) EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 121:4712–4721CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Dickson MA (2014) Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res 20:3379–3383CrossRefPubMedGoogle Scholar
  33. 33.
    Pitts TM, Davis SL, Eckhardt SG, Bradshaw-Pierce EL (2014) Targeting nuclear kinases in cancer: development of cell cycle kinase inhibitors. Pharmacol Ther 142:258–269CrossRefPubMedGoogle Scholar
  34. 34.
    Galimberti F, Thompson SL, Liu X, Li H, Memoli V, Green SR, DiRenzo J, Greninger P, Sharma SV, Settleman J, Compton DA, Dmitrovsky E (2010) Targeting the cyclin E-Cdk-2 complex represses lung cancer growth by triggering anaphase catastrophe. Clin Cancer Res 16:109–120CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Nair BC, Vallabhaneni S, Tekmal RR, Vadlamudi RK (2011) Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells. Breast Cancer Res 13:R80CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Hallaert DY, Spijker R, Jak M, Derks IA, Alves NL, Wensveen FM, de Boer JP, de Jong D, Green SR, van Oers MH, Eldering E (2007) Crosstalk among Bcl-2 family members in B-CLL: seliciclib acts via the Mcl-1/Noxa axis and gradual exhaustion of Bcl-2 protection. Cell Death Differ 14:1958–1967CrossRefPubMedGoogle Scholar
  37. 37.
    Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, Meitinger T, Mizuno-Yamasaki E, Kawaguchi K, Saeki Y, Tanaka K, Wieland T, Graf E, Saeger W, Ronchi CL, Allolio B, Buchfelder M, Strom TM, Fassnacht M, Komada M (2015) Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 47:31–38CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, Nakayama KI, Locker J, Zhu L (2013) Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 24:645–659CrossRefPubMedGoogle Scholar
  39. 39.
    Musat M, Korbonits M, Pyle M, Gueorguiev M, Kola B, Morris DG, Powell M, Dumitrache C, Poiana C, Grossman AB (2002) The expression of the F-box protein Skp2 is negatively associated with p27 expression in human pituitary tumors. Pituitary 5:235–242CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Diabetes and EndocrinologyKobe University HospitalKobeJapan

Personalised recommendations