Advertisement

Pituitary

, 11:129 | Cite as

Dynamic tests for the diagnosis and assessment of treatment efficacy in acromegaly

  • Laure Cazabat
  • Jean-Claude Souberbielle
  • Philippe ChansonEmail author
Article

Abstract

In the vast majority of cases, basal serum GH and IGF-1 levels are markedly increased in patients with obvious clinical signs and symptoms of acromegaly. The oral glucose tolerance test (OGTT) is useful for diagnosis in the minority of patients who have weak GH hypersecretion. The cutoff for a “normal” GH nadir in the OGTT remains to be agreed. The type of GH assay, its sensitivity, the type of standard used by the manufacturer, the patient’s age and especially gender, must all be taken into account. Recent studies using new highly sensitive assays suggest an upper normal GH nadir of 0.71 μg/l for female healthy patients, but no “universal” cut-off has yet been defined for healthy males (from 0.057 to 0.25 μg/l). The 1 μg/l cutoff proposed for the diagnosis of acromegaly in a 2000 consensus should be abandoned in favor of a 0.30 μg/l cutoff. Clinicians should know which assay is used, together with its sensitivity and the standard, before making therapeutic decisions. A more pragmatic view should probably be adopted when assessing the treatment response. Indeed, if “cure” is defined not with the <1 μg/l GH nadir but on the basis of healthy control values, many patients will not be considered controlled. However, the clinical relevance of such goal (e.g. achieving GH nadir <0.4 μg/l rather than <1 μg/l) in terms of prognosis and prediction of outcome on long term is not firmly established. Thus, from a pragmatic point of view, achieving a normal age-adjusted IGF-1 level and a GH nadir below 1 μg/l during OGTT will probably remain relevant for defining remission and good disease control in terms of morbidity and mortality in acromegaly.

Keywords

Pituitary Acromegaly Dynamic tests Oral glucose tolerance test Octreotide test Growth hormone Insulin-like growth factor 1 

References

  1. 1.
    Giustina A, Barkan A, Casanueva FF et al (2000) Criteria for cure of acromegaly: a consensus statement. J Clin Endocrinol Metab 85:526–529 Medline. doi: 10.1210/jc.85.2.526 PubMedCrossRefGoogle Scholar
  2. 2.
    Biochemical assessment and long-term monitoring in patients with acromegaly: statement from a joint consensus conference of the Growth Hormone Research Society and the Pituitary Society. J Clin Endocrinol Metab (2004) 89:3099–3102 Medline. doi: 10.1210/jc.2003-031138
  3. 3.
    Seth J, Ellis A, Al-Sadie R (1999) Serum growth hormone measurements in clinical practice: an audit of performance from the UK National External Quality Assessment scheme. Horm Res 51(Suppl 1):13–19 Medline. doi: 10.1159/000053130 PubMedCrossRefGoogle Scholar
  4. 4.
    Baumann G (1999) Growth hormone heterogeneity in human pituitary and plasma. Horm Res 51(Suppl 1):2–6 Medline. doi: 10.1159/000053128 PubMedCrossRefGoogle Scholar
  5. 5.
    Wieringa GE, Barth JH, Trainer PJ (2004) Growth hormone assay standardization: a biased view? Clin Endocrinol (Oxf) 60:538–539 Medline. doi: 10.1046/j.1365-2265.2004.01982.x CrossRefGoogle Scholar
  6. 6.
    Sheppard MC (2007) Growth hormone assay standardization: an important clinical advance. Clin Endocrinol (Oxf) 66:157–161 Medline. doi: 10.1111/j.1365-2265.2007.02703.x CrossRefGoogle Scholar
  7. 7.
    Trainer PJ, Barth J, Sturgeon C, Wieringaon G (2006) Consensus statement on the standardisation of GH assays. Eur J Endocrinol 155:1–2 Medline. doi: 10.1530/eje.1.02186 PubMedCrossRefGoogle Scholar
  8. 8.
    Bayle M, Chevenne D, Dousset B et al (2004) Recommandations pour la standardisation des dosages d’hormone de croissance. Ann Biol Clin (Paris) 62:155–163 MedlineGoogle Scholar
  9. 9.
    Pokrajac A, Wark G, Ellis AR, Wear J, Wieringa GE, Trainer PJ (2007) Variation in GH and IGF-I assays limits the applicability of international consensus criteria to local practice. Clin Endocrinol (Oxf) 67:65–70 Medline. doi: 10.1111/j.1365-2265.2007.02836.x CrossRefGoogle Scholar
  10. 10.
    Ho KY, Evans WS, Blizzard RM et al (1987) Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 64:51–58 MedlinePubMedGoogle Scholar
  11. 11.
    Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721 Medline. doi: 10.1210/er.2003-0035 PubMedCrossRefGoogle Scholar
  12. 12.
    Faria AC, Bekenstein LW, Booth RA Jr et al (1992) Pulsatile growth hormone release in normal women during the menstrual cycle. Clin Endocrinol (Oxf) 36:591–596 MedlineCrossRefGoogle Scholar
  13. 13.
    Chapman IM, Hartman ML, Straume M, Johnson ML, Veldhuis JD, Thorner MO (1994) Enhanced sensitivity growth hormone (GH) chemiluminescence assay reveals lower postglucose nadir GH concentrations in men than women. J Clin Endocrinol Metab 78:1312–1319 Medline. doi: 10.1210/jc.78.6.1312 PubMedCrossRefGoogle Scholar
  14. 14.
    Markkanen H, Pekkarinen T, Valimaki MJ et al (2006) Effect of sex and assay method on serum concentrations of growth hormone in patients with acromegaly and in healthy controls. Clin Chem 52:468–473 doi: 10.1373/clinchem.2005.060236 PubMedCrossRefGoogle Scholar
  15. 15.
    Freda PU, Landman RE, Sundeen RE, Post KD (2001) Gender and age in the biochemical assessment of cure of acromegaly. Pituitary 4:163–171 Medline. doi: 10.1023/A:1015314906972 PubMedCrossRefGoogle Scholar
  16. 16.
    Costa AC, Rossi A, Martinelli CE Jr, Machado HR, Moreira AC (2002) Assessment of disease activity in treated acromegalic patients using a sensitive GH assay: should we achieve strict normal GH levels for a biochemical cure? J Clin Endocrinol Metab 87:3142–3147 Medline. doi: 10.1210/jc.87.7.3142 PubMedCrossRefGoogle Scholar
  17. 17.
    Freda PU, Post KD, Powell JS, Wardlaw SL (1998) Evaluation of disease status with sensitive measures of growth hormone secretion in 60 postoperative patients with acromegaly. J Clin Endocrinol Metab 83:3808–3816 Medline. doi: 10.1210/jc.83.11.3808 PubMedCrossRefGoogle Scholar
  18. 18.
    Ronchi CL, Arosio M, Rizzo E, Lania AG, Beck-Peccoz P, Spada A (2007) Adequacy of current postglucose GH nadir limit (<1 microg/l) to define long-lasting remission of acromegalic disease. Clin Endocrinol (Oxf) 66:538–542 MedlineGoogle Scholar
  19. 19.
    Trainer PJ (2002) Editorial: acromegaly–consensus, what consensus? J Clin Endocrinol Metab 87:3534–3536 Medline. doi: 10.1210/jc.87.8.3534 PubMedCrossRefGoogle Scholar
  20. 20.
    Pekic S, Doknic M, Miljic D et al (2006) Ghrelin test for the assessment of GH status in successfully treated patients with acromegaly. Eur J Endocrinol 154:659–666 Medline. doi: 10.1530/eje.1.02148 PubMedCrossRefGoogle Scholar
  21. 21.
    Grottoli S, Razzore P, Gaia D et al (2003) Three-hour spontaneous GH secretion profile is as reliable as oral glucose tolerance test for the diagnosis of acromegaly. J Endocrinol Invest 26:123–127 MedlinePubMedGoogle Scholar
  22. 22.
    Grottoli S, Gasco V, Ragazzoni F, Ghigo E (2003) Hormonal diagnosis of GH hypersecretory states. J Endocrinol Invest 26(Suppl):27–35 MedlinePubMedGoogle Scholar
  23. 23.
    Hattori N, Shimatsu A, Kato Y et al (1990) Growth hormone responses to oral glucose loading measured by highly sensitive enzyme immunoassay in normal subjects and patients with glucose intolerance and acromegaly. J Clin Endocrinol Metab 70:771–776 MedlinePubMedGoogle Scholar
  24. 24.
    Melmed S, Casanueva F, Cavagnini F et al (2005) Consensus statement: medical management of acromegaly. Eur J Endocrinol 153:737–740 Medline. doi: 10.1530/eje.1.02036 PubMedCrossRefGoogle Scholar
  25. 25.
    Dimaraki EV, Jaffe CA, DeMott-Friberg R, Chandler WF, Barkan AL (2002) Acromegaly with apparently normal GH secretion: implications for diagnosis and follow-up. J Clin Endocrinol Metab 87:3537–3542 Medline. doi: 10.1210/jc.87.8.3537 PubMedCrossRefGoogle Scholar
  26. 26.
    Freda PU, Reyes CM, Nuruzzaman AT, Sundeen RE, Bruce JN (2003) Basal and glucose-suppressed GH levels less than 1 microg/L in newly diagnosed acromegaly. Pituitary 6:175–180 Medline. doi: 10.1023/B:PITU.0000023424.72021.e2 PubMedCrossRefGoogle Scholar
  27. 27.
    Freda PU (2003) Current concepts in the biochemical assessment of the patient with acromegaly. Growth Horm IGF Res 13:171–184 Medline. doi: 10.1016/S1096-6374(03)00029-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Freda PU (2003) Pitfalls in the biochemical assessment of acromegaly. Pituitary 6:135–140 Medline. doi: 10.1023/B:PITU.0000011174.79946.10 PubMedCrossRefGoogle Scholar
  29. 29.
    Mercado M, Espinosa de los Monteros AL, Sosa E, Cheng S, Mendoza V, Hernandez I et al (2004) Clinical-biochemical correlations in acromegaly at diagnosis and the real prevalence of biochemically discordant disease. Horm Res 62:293–299 Medline. doi: 10.1159/000082032 PubMedCrossRefGoogle Scholar
  30. 30.
    Parkinson C, Ryder WD, Trainer PJ (2001) The relationship between serum GH and serum IGF-I in acromegaly is gender-specific. J Clin Endocrinol Metab 86:5240–5244 Medline. doi: 10.1210/jc.86.11.5240 PubMedCrossRefGoogle Scholar
  31. 31.
    Parkinson C, Renehan AG, Ryder WD, O’Dwyer ST, Shalet SM, Trainer PJ (2002) Gender and age influence the relationship between serum GH and IGF-I in patients with acromegaly. Clin Endocrinol (Oxf) 57:59–64 Medline. doi: 10.1046/j.1365-2265.2002.01560.x CrossRefGoogle Scholar
  32. 32.
    Lim DJ, Kwon HS, Cho JH et al (2007) Acromegaly associated with type 2 diabetes showing normal IGF-1 levels under poorly controlled glycemia. Endocr J 54:537–541 Medline. doi: 10.1507/endocrj.K06-083 PubMedCrossRefGoogle Scholar
  33. 33.
    Roelfsema V, Clark RG (2001) The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure. J Am Soc Nephrol 12:1297–1306 MedlinePubMedGoogle Scholar
  34. 34.
    Mussig K, Gallwitz B, Ranke MB, Horger M, Haring HU, Quabbe HJ (2006) Acromegaly and end-stage renal disease: a diagnostic challenge. J Endocrinol Invest 29:745–749 MedlinePubMedGoogle Scholar
  35. 35.
    Wong NA, Ahlquist JA, Camacho-Hubner C et al (1997) Acromegaly or chronic renal failure: a diagnostic dilemma. Clin Endocrinol (Oxf) 46:221–226 Medline. doi: 10.1046/j.1365-2265.1997.960911.x CrossRefGoogle Scholar
  36. 36.
    Colao A, Merola B, Ferone D et al (1994) Effect of corticotrophin-releasing hormone administration on growth hormone levels in acromegaly: in vivo and in vitro studies. Eur J Endocrinol 131:14–19 MedlinePubMedGoogle Scholar
  37. 37.
    Utsumi A, Hanew K, Sugawara A et al (1992) Plasma growth hormone (GH) responses to corticotropin-releasing hormone in patients with acromegaly–the effect of dexamethasone pretreatment and the comparison with GH responses to thyrotropin-releasing hormone, gonadotropin-releasing hormone and GH-releasing hormone. J Endocrinol Invest 15:167–171 MedlinePubMedGoogle Scholar
  38. 38.
    Yang IM, Woo JT, Kim SW, Kim JW, Kim YS, Choi YK (1995) Characteristics of acromegalic patients with a good response to octreotide, a somatostatin analogue. Clin Endocrinol (Oxf) 42:295–301 MedlineCrossRefGoogle Scholar
  39. 39.
    Park C, Yang I, Woo J et al (2004) Somatostatin (SRIF) receptor subtype 2 and 5 gene expression in growth hormone-secreting pituitary adenomas: the relationship with endogenous srif activity and response to octreotide. Endocr J 51:227–236 Medline. doi: 10.1507/endocrj.51.227 PubMedCrossRefGoogle Scholar
  40. 40.
    Pumarino H, Oviedo S, Michelsen H, Campino C (1991) [Active acromegaly and gigantism: some clinical characteristics of 50 patients]. Rev Med Chil 119:897–907 MedlinePubMedGoogle Scholar
  41. 41.
    Biermasz NR, Smit JW, van Dulken H, Roelfsema F (2002) Postoperative persistent thyrotrophin releasing hormone-induced growth hormone release predicts recurrence in patients with acromegaly. Clin Endocrinol (Oxf) 56:313–319 Medline. doi: 10.1046/j.1365-2265.2002.01465.x CrossRefGoogle Scholar
  42. 42.
    Watanobe H, Tamura T (1995) A re-evaluation of the prolactin-releasing activity of growth hormone-releasing hormone in acromegaly in vivo. Neuropeptides 28:73–78 Medline. doi: 10.1016/0143-4179(95)90078-0 PubMedCrossRefGoogle Scholar
  43. 43.
    Watanobe H, Tamura T (1995) Clinical significance of the growth hormone response to vasoactive intestinal peptide and gonadotropin-releasing hormone in acromegaly. Neuropeptides 28:115–124 Medline. doi: 10.1016/0143-4179(95)90083-7 PubMedCrossRefGoogle Scholar
  44. 44.
    De Marinis L, Mancini A, Bianchi A et al (2002) Preoperative growth hormone response to thyrotropin-releasing hormone and oral glucose tolerance test in acromegaly: a retrospective evaluation of 50 patients. Metabolism 51:616–621 Medline. doi: 10.1053/meta.2002.32017 PubMedCrossRefGoogle Scholar
  45. 45.
    Schaison G, Couzinet B, Moatti N, Pertuiset B (1983) Critical study of the growth hormone response to dynamic tests and the insulin growth factor assay in acromegaly after microsurgery. Clin Endocrinol (Oxf) 18:541–549 MedlineCrossRefGoogle Scholar
  46. 46.
    Freda PU, Nuruzzaman AT, Reyes CM, Sundeen RE, Post KD (2004) Significance of “abnormal” nadir growth hormone levels after oral glucose in postoperative patients with acromegaly in remission with normal insulin-like growth factor-I levels. J Clin Endocrinol Metab 89:495–500 Medline. doi: 10.1210/jc.2003-031316 PubMedCrossRefGoogle Scholar
  47. 47.
    Colao A, Pivonello R, Cavallo LM et al (2006) Age changes the diagnostic accuracy of mean profile and nadir growth hormone levels after oral glucose in postoperative patients with acromegaly. Clin Endocrinol (Oxf) 65:250–256 Medline. doi: 10.1111/j.1365-2265.2006.02584.x CrossRefGoogle Scholar
  48. 48.
    Minuto F, Resmini E, Boschetti M et al (2004) Assessment of disease activity in acromegaly by means of a single blood sample: comparison of the 120th minute postglucose value with spontaneous GH secretion and with the IGF system. Clin Endocrinol (Oxf) 61:138–144 Medline. doi: 10.1111/j.1365-2265.2004.02064.x CrossRefGoogle Scholar
  49. 49.
    Minniti G, Jaffrain-Rea ML, Esposito V, Santoro A, Tamburrano G, Cantore G (2003) Evolving criteria for post-operative biochemical remission of acromegaly: can we achieve a definitive cure? An audit of surgical results on a large series and a review of the literature. Endocr Relat Cancer 10:611–619 Medline. doi: 10.1677/erc.0.0100611 PubMedCrossRefGoogle Scholar
  50. 50.
    Mukherjee A, Monson JP, Jonsson PJ, Trainer PJ, Shalet SM (2003) Seeking the optimal target range for insulin-like growth factor I during the treatment of adult growth hormone disorders. J Clin Endocrinol Metab 88:5865–5870 Medline. doi: 10.1210/jc.2002-021741 PubMedCrossRefGoogle Scholar
  51. 51.
    Maison P, Chanson P (2006) Less is more risky? Growth hormone and insulin-like growth factor 1 levels and cardiovascular risk. Nat Clin Pract Endocrinol Metab 2:650–651 Medline. doi: 10.1038/ncpendmet0350 PubMedCrossRefGoogle Scholar
  52. 52.
    Brockmeier SJ, Buchfelder M, Fahlbusch R (1993) TRH/GnRH test in acromegaly. Long-term follow-up experience with successfully treated patients. Horm Metab Res 25:275–277 MedlinePubMedGoogle Scholar
  53. 53.
    Chanson P (1997) Predicting the effects of long-term medical treatment in acromegaly. At what cost? For what benefits? [comment]. Eur J Endocrinol 136:359–361 MedlinePubMedCrossRefGoogle Scholar
  54. 54.
    Biermasz NR, Pereira AM, Smit JW, Romijn JA, Roelfsema F (2005) Intravenous octreotide test predicts the long term outcome of treatment with octreotide-long-acting repeatable in active acromegaly. Growth Horm IGF Res 15:200–206 Medline. doi: 10.1016/j.ghir.2005.02.007 PubMedCrossRefGoogle Scholar
  55. 55.
    Karavitaki N, Botusan I, Radian S, Coculescu M, Turner HE, Wass JA (2005) The value of an acute octreotide suppression test in predicting long-term responses to depot somatostatin analogues in patients with active acromegaly. Clin Endocrinol (Oxf) 62:282–288 Medline. doi: 10.1111/j.1365-2265.2004.02191.x CrossRefGoogle Scholar
  56. 56.
    Gilbert JA, Miell JP, Chambers SM, McGregor AM, Aylwin SJ (2005) The nadir growth hormone after an octreotide test dose predicts the long-term efficacy of somatostatin analogue therapy in acromegaly. Clin Endocrinol (Oxf) 62:742–747 Medline. doi: 10.1111/j.1365-2265.2005.02278.x CrossRefGoogle Scholar
  57. 57.
    Colao A, Ferone D, Lastoria S et al (1996) Prediction of efficacy of octreotide therapy in patients with acromegaly. J Clin Endocrinol Metab 81:2356-2362 Medline. doi: 10.1210/jc.81.6.2356 PubMedCrossRefGoogle Scholar
  58. 58.
    Lindsay JR, McConnell EM, Hunter SJ, McCance DR, Sheridan B, Atkinson AB (2004) Poor responses to a test dose of subcutaneous octreotide predict the need for adjuvant therapy to achieve ‘safe’ growth hormone levels. Pituitary 7:139–144 Medline. doi: 10.1007/s11102-005-1756-2 PubMedCrossRefGoogle Scholar
  59. 59.
    de Herder WW, Taal HR, Uitterlinden P, Feelders RA, Janssen JA, van der Lely AJ (2005) Limited predictive value of an acute test with subcutaneous octreotide for long-term IGF-I normalization with Sandostatin LAR in acromegaly. Eur J Endocrinol 153:67–71 Medline. doi: 10.1530/eje.1.01935 PubMedCrossRefGoogle Scholar
  60. 60.
    Pokrajac A, Claridge AG, Shakoor SK, Trainer PJ (2006) The octreotide test dose is not a reliable predictor of the subsequent response to somatostatin analogue therapy in patients with acromegaly. Eur J Endocrinol 154:267–274 Medline. doi: 10.1530/eje.1.02073 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laure Cazabat
    • 1
  • Jean-Claude Souberbielle
    • 2
    • 3
  • Philippe Chanson
    • 1
    • 4
    Email author
  1. 1.Service d’Endocrinologie et Maladies de la ReproductionHôpital de BicêtreLe-Kremlin-BicetreFrance
  2. 2.Service d’Explorations FonctionnellesHôpital NeckerParisFrance
  3. 3.Faculté de Médecine René DescartesUniversité Paris 5ParisFrance
  4. 4.Faculté de MédecineUniversité Paris Sud 11Le-Kremlin-BicetreFrance

Personalised recommendations