Pituitary

, Volume 11, Issue 2, pp 187–207 | Cite as

Systemic illness

  • Marta Bondanelli
  • Maria Chiara Zatelli
  • Maria Rosaria Ambrosio
  • Ettore C. degli Uberti
Article

Abstract

Systemic illnesses are associated with alterations in the hypothalamic–pituitary–peripheral hormone axes, which represent part of the adaptive response to stressful events and may be influenced by type and severity of illness and/or pharmacological therapy. The pituitary gland responds to an acute stressful event with two secretory patterns: adrenocorticotropin (ACTH), prolactin (PRL) and growth hormone (GH) levels increase, while luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyrotropin (TSH) levels may either decrease or remain unchanged, associated with a decreased activity of their target organ. In protracted critical illness, there is a uniformly reduced pulsatile secretion of ACTH, TSH, LH, PRL and GH, causing a reduction in serum levels of the respective target-hormones. These adaptations are initially protective; however, if inadequate or excessive they may be dangerous and may contribute to the high morbidity and mortality risk of these patients. There is no consensus regarding the type of approach, as well as the criteria to use to define pituitary axis function in critically ill patients. We here provide a critical approach to pituitary axis evaluation during systemic illness.

Keywords

Pituitary function Dynamic tests Critical illness System disease 

References

  1. 1.
    Van den Berghe G (2000) Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 143:1–13. Medline. doi:10.1530/eje.0.1430001 PubMedCrossRefGoogle Scholar
  2. 2.
    Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284. Medline. doi:10.1146/annurev.physiol.67.040403.120816 PubMedCrossRefGoogle Scholar
  3. 3.
    Dimopoulou I, Tsagarakis S (2005) Hypothalamic–pituitary dysfunction in critically ill patients with traumatic and nontraumatic brain injury. Intensive Care Med 31:1020–1028. Medline. doi:10.1007/s00134-005-2689-y PubMedCrossRefGoogle Scholar
  4. 4.
    Schuetz P, Müller B (2006) The hypothalamic–pituitary–adrenal axis in critical illness. Endocrinol Metab Clin North Am 35:823–838. Medline. doi:10.1016/j.ecl.2006.09.013 PubMedCrossRefGoogle Scholar
  5. 5.
    Langton JE, Brent GA (2002) Nonthyroidal illness syndrome: evaluation of thyroid function in sick patients. Endocrinol Metab Clin North Am 31:159–172. Medline. doi:10.1016/S0889-8529(01)00008-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Douyon L, Schteingart DE (2002) Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol Metab Clin North Am 31:173–189. Medline. doi:10.1016/S0889-8529(01)00023-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Leavey SF, Weitzel WF (2002) Endocrine abnormalities in chronic renal failure. Endocrinol Metab Clin North Am 31:107–119. Medline. doi:10.1016/S0889-8529(01)00006-8 PubMedCrossRefGoogle Scholar
  8. 8.
    O’Beirne J, Holmes M, Agarwal B et al (2007) Adrenal insufficiency in liver disease—what is the evidence? J Hepatol 47:418–423. Medline. doi:10.1016/j.jhep.2007.06.008 PubMedCrossRefGoogle Scholar
  9. 9.
    Mayo J, Collazos J, Martínez E, Ibarra S (2002) Adrenal function in the human immunodeficiency virus-infected patient. Arch Intern Med 162:1095–1098. Medline. doi:10.1001/archinte.162.10.1095 PubMedCrossRefGoogle Scholar
  10. 10.
    Young EA, Korszun A (2002) The hypothalamic–pituitary–gonadal axis in mood disorders. Endocrinol Metab Clin North Am 31:63–78. Medline. doi:10.1016/S0889-8529(01)00002-0 PubMedCrossRefGoogle Scholar
  11. 11.
    Arafah BM (2006) Hypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods. J Clin Endocrinol Metab 91:3725–3745. Medline. doi:10.1210/jc.2006-0674 PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper MS, Stewart PM (2003) Corticosteroid insufficiency in acutely ill patients. N Engl J Med 348:727–734. Medline. doi:10.1056/NEJMra020529 PubMedCrossRefGoogle Scholar
  13. 13.
    Melby JC, Spink WW (1958) Comparative studies on adrenal cortical function in healthy adults and in patients with shock due to infection. J Clin Invest 37:1791–1798. Medline. doi:10.1172/JCI103772 PubMedCrossRefGoogle Scholar
  14. 14.
    Perrot D, Bonneton A, Dechaud H, Motin J, Pugeat M (1993) Hypercortisolism in septic shock is not suppressible by dexamethasone infusion. Crit Care Med 21:396–401. Medline. doi:10.1097/00003246-199303000-00018 PubMedCrossRefGoogle Scholar
  15. 15.
    Bondanelli M, Ambrosio MR, Zatelli MC, De Marinis L, degli Uberti EC (2005) Hypopituitarism after traumatic brain injury. Eur J Endocrinol 152:679–691. Medline. doi:10.1530/eje.1.01895 PubMedCrossRefGoogle Scholar
  16. 16.
    Widmer IE, Puder JJ, Konig C et al (2005) Cortisol response in relation to the severity of stress and illness. J Clin Endocrinol Metab 90:4579–4586. Medline. doi:10.1210/jc.2005-0354 PubMedCrossRefGoogle Scholar
  17. 17.
    Marik PE, Zaloga GP (2002) Adrenal insufficiency in the critically ill: a new look at an old problem. Chest 122:1784–1796. Medline. doi:10.1378/chest.122.5.1784 PubMedCrossRefGoogle Scholar
  18. 18.
    Marik PE (2006) The diagnosis of adrenal insufficiency in the critically ill patient: does it really matter? Crit Care 10:176. Medline. doi:10.1186/cc5105 PubMedCrossRefGoogle Scholar
  19. 19.
    Beishuzen A, Thijs LG, Vermes I (2001) Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and mutitrauma. Intensive Care Med 27:1584–1591. Medline. doi:10.1007/s001340101073 CrossRefGoogle Scholar
  20. 20.
    Molijn GJ, Spek JJ, Van Uffelen JC et al (1995) Differential adaptation of glucocorticoid sensitivity of peripheral blood mononuclear leukocytes in patients with sepsis or septic shock. J Clin Endocrinol Metab 80:1799–1803. Medline. doi:10.1210/jc.80.6.1799 PubMedCrossRefGoogle Scholar
  21. 21.
    Naito Y, Tamai S, Shingu K (1993) Responses of plasma ACTH, cortisol and cytokines during and after upper abdominal surgery. Anesthesiology 77:426–431CrossRefGoogle Scholar
  22. 22.
    Udelsman R, Ramp J, Gallucci WT et al (1986) Adaptation during surgical stress. A reevaluation of the role of glucocorticoids. J Clin Invest 77:1377–1381. MedlinePubMedCrossRefGoogle Scholar
  23. 23.
    Chernow B, Alexander HR, Smallridge RC et al (1987) Hormonal responses to graded surgical stress. Arch Intern Med 147:1273–1278. Medline. doi:10.1001/archinte.147.7.1273 PubMedCrossRefGoogle Scholar
  24. 24.
    Swingle WW, Davanzo JP, Crossfield HC (1959) Glucocorticoids and maintenance of blood pressure and plasma volume of adrenalectomized dogs subjected to stress. Proc Soc Exp Biol Med 100:617–622. MedlinePubMedGoogle Scholar
  25. 25.
    Arafah BM, Kailani SH, Nekl KE, Gold RS, Selman WR (1994) Immediate recovery of pituitary function following transsphenoidal resection of pituitary macroadenoma. J Clin Endocrinol Metab 79:348–354. Medline. doi:10.1210/jc.79.2.348 PubMedCrossRefGoogle Scholar
  26. 26.
    Sibbald WJ, Short A, Cohen MP, Wilson RF (1977) Variation in adrenocortical responsiveness during severe bacterial infections. Unrecognized adrenal insufficiency in severe bacterial infections. Ann Surg 186:29–33. Medline. doi:10.1097/00000658-197707000-00005 PubMedCrossRefGoogle Scholar
  27. 27.
    Bouachour G, Tirot P, Gouello JP, Mathieu E, Vincent JF, Alquier P (1995) Adrenocortical function during septic shock. Intensive Care Med 21:57–62. Medline. doi:10.1007/BF02425155 PubMedCrossRefGoogle Scholar
  28. 28.
    Aygen B, Inan M, Doganay M, Kelestimur F (1997) Adrenal function in patients with sepsis. Exp Clin Endocrinol Diabetes 105:182–186. MedlinePubMedGoogle Scholar
  29. 29.
    Clark PM, Neylon I, Raggatt PR, Sheppard MM, Steward PM (1998) Defining the normal cortisol response to the short synacthen test: implications for the investigation of hypothalamic–pituitary disorders. Clin Endocrinol (Oxf) 49:287–292. Medline. doi:10.1046/j.1365-2265.1998.00555.x CrossRefGoogle Scholar
  30. 30.
    Bolland MJ, Chiu WW, Davidson JS, Croxson MS (2005) Heterophile antibodies may cause falsely lowered serum cortisol values. J Endocrinol Invest 28:643–645. MedlinePubMedGoogle Scholar
  31. 31.
    Ho JT, Al-Musalhi H, Chapman MJ et al (2006) Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab 91:105–114. Medline. doi:10.1210/jc.2005-0265 PubMedCrossRefGoogle Scholar
  32. 32.
    Hamrahian AH, Oseni TS, Arafah BM (2004) Measurements of serum free cortisol in critically ill patients. N Engl J Med 350:1629–1638. Medline. doi:10.1056/NEJMoa020266 PubMedCrossRefGoogle Scholar
  33. 33.
    Dickstein G (2005) On the term “relative adrenal insufficiency”—or what do we really measure with adrenal stimulation tests? J Clin Endocrinol Metab 90:4973–4974. Medline. doi:10.1210/jc.2005-1196 PubMedCrossRefGoogle Scholar
  34. 34.
    Salgado DR, Verdeal JC, Rocco JR (2006) Adrenal function testing in patients with septic shock. Crit Care 10:R149. Medline. doi:10.1186/cc5077 PubMedCrossRefGoogle Scholar
  35. 35.
    Bonte HA, van den Hoven RJ, van der Sluijs Veer G, Vermes I (1999) The use of free cortisol index for laboratory assessment of pituitary–adrenal function. Clin Chem Lab Med 37:127–132. Medline. doi:10.1515/CCLM.1999.023 PubMedCrossRefGoogle Scholar
  36. 36.
    Cohen J, Venkatesh B, Galligan J, Thomas P (2004) Salivary cortisol concentration in the intensive care population: correlation with plasma cortisol values. Anaesth Intensive Care 32:843–845. MedlinePubMedGoogle Scholar
  37. 37.
    Beishuizen A, Thijs LG, Vermes I (2002) Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Crit Care 6:434–438. Medline. doi:10.1186/cc1530 PubMedCrossRefGoogle Scholar
  38. 38.
    Marx C, Petros S, Bornstein SR et al (2003) Adrenocortical hormones in survivors and non-survivors of severe sepsis: diverse time course of DHEA and DHEA-S and cortisol. Crit Care Med 31:1382–1388. Medline. doi:10.1097/01.CCM.0000063282.83188.3D PubMedCrossRefGoogle Scholar
  39. 39.
    Arlt W, Hammer F, Sanning P et al (2006) Dissociation of serum dehydroepiandrosterone and dehydroepiandrosterone sulphate in septic shock. J Clin Endocrinol Metab 91:2548–2554. Medline. doi:10.1210/jc.2005-2258 PubMedCrossRefGoogle Scholar
  40. 40.
    Annane D, Briegel J, Sprung CL (2003) Corticosteroid insufficiency in acutely ill patients. N Engl J Med 348:2157–2159. Medline. doi:10.1056/NEJM200305223482123 PubMedCrossRefGoogle Scholar
  41. 41.
    Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E (2000) A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283:1038–1045. Medline. doi:10.1001/jama.283.8.1038 PubMedCrossRefGoogle Scholar
  42. 42.
    Loisa P, Uusaro A, Ruokonen E (2005) A single adrenocorticotropic hormone stimulation test does not reveal adrenal insufficiency in septic shock. Anesth Analg 101:1792–1798. Medline. doi:10.1213/01.ANE.0000184042.91452.48 PubMedCrossRefGoogle Scholar
  43. 43.
    Bouachour G, Roy PM, Guiraud MP (1995) The repetitive corticotropin stimulation test in patients with septic shock. Ann Intern Med 123:962–963. MedlinePubMedGoogle Scholar
  44. 44.
    Courtney CH, McAllister AS, Bell PM et al (2004) Low- and standard-dose corticotropin and insulin hypoglycemia testing in the assessment of hypothalamic–pituitary–adrenal function after pituitary surgery. J Clin Endocrinol Metab 89:1712–1717. Medline. doi:10.1210/jc.2003-031577 PubMedCrossRefGoogle Scholar
  45. 45.
    Schneider HS, Aimaretti G, Kreitschmann-Andermahr I, Stalla GK, Ghigo E (2007) Hypopituitarism. Lancet 369:1461–1470. Medline. doi:10.1016/S0140-6736(07)60673-4 PubMedCrossRefGoogle Scholar
  46. 46.
    Siraux V, De Backer D, Yalavatti G et al (2005) A relative adrenal insufficiency in patients with septic shock: comparison of low-dose and conventional corticotropin tests. Crit Care Med 33:2479–2486. Medline. doi:10.1097/01.CCM.0000185641.87051.7C PubMedCrossRefGoogle Scholar
  47. 47.
    Bondanelli M, Ambrosio MR, Cavazzini L et al (2007) Anterior pituitary function may predict functional and cognitive outcome in patients with traumatic brain injury undergoing rehabilitation. J Neurotrauma 24:1687–1697. Medline. doi:10.1089/neu.2007.0343 PubMedCrossRefGoogle Scholar
  48. 48.
    Bondanelli M, Ambrosio MR, Onofri A, degli Uberti EC et al (2006) Predictive value of circulating insulin-like growth factor I levels in ischemic stroke outcome. J Clin Endocrinol Metab 91:3928–3934. Medline. doi:10.1210/jc.2006-1040 PubMedCrossRefGoogle Scholar
  49. 49.
    Yaegashi M, Boujoukos AJ (2006) The low-dose ACTH test in the ICU: not ready for prime time. Crit Care 10:313. Medline. doi:10.1186/cc4660 PubMedCrossRefGoogle Scholar
  50. 50.
    Agha A, Phillips J, O’Kelly P, Tormey W, Thompson CJ (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118:1416. Medline. doi:10.1016/j.amjmed.2005.02.042 PubMedCrossRefGoogle Scholar
  51. 51.
    Peterson RE, Pierce CE (1960) The metabolism of corticosterone in men. J Clin Invest 39:741–757. Medline. doi:10.1172/JCI104091 PubMedCrossRefGoogle Scholar
  52. 52.
    Targher G, Bertolini L, Rodella S, Zoppini G, Zenari L, Falezza G (2006) Associations between liver histology an d cortisol secretion in subjects with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 64:337–341. Medline. doi:10.1111/j.1365-2265.2006.02466.x CrossRefGoogle Scholar
  53. 53.
    Tayek JA (2005) Lower cortisol concentrations in patients with liver disease: more adrenal failure or more confusion? Crit Care Med 33:1431–1432. Medline. doi:10.1097/01.CCM.0000166680.42475.B7 PubMedCrossRefGoogle Scholar
  54. 54.
    Clodi M, Riedl M, Schmaldienst S et al (1998) Adrenal function in patients with chronic renal failure. Am J Kidney Dis 32:52–55. MedlinePubMedCrossRefGoogle Scholar
  55. 55.
    N’Gankam V, Uehlinger D, Dick B, Frey BM, Frey FJ (2002) Increased cortisol metabolites and reduced activity of 11beta-hydroxysteroid dehydrogenase in patients on hemodialysis. Kidney Int 61:1859–1866. Medline. doi:10.1046/j.1523-1755.2002.00308.x PubMedCrossRefGoogle Scholar
  56. 56.
    Schroth M, Plank C, Rauh M, Dorr HG, Rascher W, Dotsch J (2006) Pediatric renal allograft transplantation does not normalize the increased cortisol/cortisone ratios of chronic renal failure. Eur J Endocrinol 154:555–561. Medline. doi:10.1530/eje.1.02121 PubMedCrossRefGoogle Scholar
  57. 57.
    Vigna L, Buccianti G, Orsatti A et al (1995) The impact of long-term hemodialysis on pituitary–adrenocortical function. Ren Fail 17:629–637. Medline. doi:10.3109/08860229509037629 PubMedCrossRefGoogle Scholar
  58. 58.
    Morineau G, Boudi A, Barka A et al (1997) Radioimmunoassay of cortisone in serum, urine, and saliva to assess the status of the cortisol–cortisone shuttle. Clin Chem 43:1397–1407. MedlinePubMedGoogle Scholar
  59. 59.
    Villette JM, Bourin P, Doinel C et al (1990) Circadian variations in plasma levels of hypophyseal, adrenocortical and testicular hormones in men infected with human immunodeficiency virus. J Clin Endocrinol Metab 70:572–577. MedlinePubMedGoogle Scholar
  60. 60.
    Wisniewski TL, Hilton CW, Morse EW, Svec F (1993) The relationship of serum DHEA-S and cortisol levels to measures of immune function in human immunodeficiency virus-related illness. Am J Med Sci 305:79–83. Medline. doi:10.1097/00000441-199302000-00003 PubMedCrossRefGoogle Scholar
  61. 61.
    Clerici M, Trabattoni D, Piconi S et al (1997) A possible role for the cortisol/anticortisols imbalance in the progression of human immunodeficiency virus. Psychoneuroendocrinology 22:S27–S31. Medline. doi:10.1016/S0306-4530(97)00019-X PubMedCrossRefGoogle Scholar
  62. 62.
    Bricaire F, Marche C, Zoubi D, Regnier B, Saimot AG (1988) Adrenocortical lesions and AIDS. Lancet 1:881. Medline. doi:10.1016/S0140-6736(88)91624-8 PubMedCrossRefGoogle Scholar
  63. 63.
    Licinio J, Wong ML, Gold PW (1996) The hypothalamic–pituitary–adrenal axis in anorexia nervosa. Psychiatry Res 62:75–83. Medline. doi:10.1016/0165-1781(96)02991-5 PubMedCrossRefGoogle Scholar
  64. 64.
    Mebis L, Debaveye Y, Visser TJ, Van den Berghe G (2006) Changes within the thyroid axis during the course of critical illness. Endocrinol Metab Clin North Am 35:807–821. Medline. doi:10.1016/j.ecl.2006.09.009 PubMedCrossRefGoogle Scholar
  65. 65.
    Mufti TS, Jielani A (2006) Deranged thyroid hormone status in non-thyroid illnesses; sick euthyroid syndrome. J Ayub Med Coll Abbottabad 18:1–3. MedlinePubMedGoogle Scholar
  66. 66.
    Larsen R, Davies TF, Schlumberger MJ, Hay ID (2003) Thyroid physiology and diagnostic evaluation of patients with thyroid disorders. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS (eds) Williams textbook of endocrinology, 10th edn. Saunders, Philadelphia, pp 331–372Google Scholar
  67. 67.
    Kaplan MM, Larsen PR, Crantz FR, Dzau VJ, Rossing TH, Haddow JE (1982) Prevalence of abnormal thyroid function test results in patients with acute medical illnesses. Am J Med 72:9–16. Medline. doi:10.1016/0002-9343(82)90565-4 PubMedCrossRefGoogle Scholar
  68. 68.
    Langouche L, Van den Berghe G (2006) The dynamic neuroendocrine response to critical illness. Endocrinol Metab Clin North Am 35:777–791. Medline. doi:10.1016/j.ecl.2006.09.007 PubMedCrossRefGoogle Scholar
  69. 69.
    Brent GA, Hershman JM (1986) Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab 63:1–8. MedlinePubMedGoogle Scholar
  70. 70.
    Stockigt JR (1996) Guidelines for diagnosis and monitoring of thyroid disease: nonthyroidal illness. Clin Chem 42:188–192. MedlinePubMedGoogle Scholar
  71. 71.
    Chopra IJ, Williams DE, Orgiazzi J, Solomon DH (1975) Opposite effects of corticosteroids on serum concentrations of 3,3′,5′ triiodothyronine (reverse T3) and 3,3′,5 triiodothyronine (T3). J Clin Endocrinol Metab 41:911–920. MedlinePubMedGoogle Scholar
  72. 72.
    van der Poll T, Romijn JA, Wiersinga WM, Sauerwein HP (1990) Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab 71:1567–1572. MedlinePubMedGoogle Scholar
  73. 73.
    Boelen A, Platvoet-Ter Schiphorst MC, Wiersinga WM (1993) Association between serum interleukin-6 and serum 3,5,3′-triiodothyronine in nonthyroidal illness. J Clin Endocrinol Metab 77:1695–1699. Medline. doi:10.1210/jc.77.6.1695 PubMedCrossRefGoogle Scholar
  74. 74.
    Kaptein EM (1996) Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr Rev 17:45–63. Medline. doi:10.1210/er.17.1.45 PubMedCrossRefGoogle Scholar
  75. 75.
    Ricart-Engel W, Fernandez-Real JM, Gonzalez-Huix F, del Pozo M, Mascaro J, Garcia-Bragado F (1996) The relation between thyroid function and nutritional status in HIV-infected patients. Clin Endocrinol (Oxf) 44:53–58. Medline. doi:10.1046/j.1365-2265.1996.623445.x CrossRefGoogle Scholar
  76. 76.
    Chopra IJ, Huang TS, Beredo A, Solomon DH, Chua Teco GN, Mead JF (1985) Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3′ triiodothyronine in sera of patients with nonthyroidal illness. J Clin Endocrinol Metab 60:666–672. MedlinePubMedGoogle Scholar
  77. 77.
    Burmeister LA (1995) Reverse T3 does not reliably differentiate hypothyroid sick syndrome from euthyroid sick syndrome. Thyroid 5:435–441. MedlinePubMedGoogle Scholar
  78. 78.
    Kaptein EM, Grieb DA, Spencer CA, Wheeler WS, Nicoloff JT (1981) Thyroxine metabolism in the low thyroxine state of critical nonthyroidal illnesses. J Clin Endocrinol Metab 53:764–771. MedlinePubMedGoogle Scholar
  79. 79.
    Peeters RP, Wouters PJ, van Toor H, Kaptein E, Visser TJ, Van den Berghe G (2005) Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab 90:4559–4565. Medline. doi:10.1210/jc.2005-0535 PubMedCrossRefGoogle Scholar
  80. 80.
    Attia J, Margetts P, Guyatt G (1999) Diagnosis of thyroid disease in hospitalized patients: a systematic review. Arch Intern Med 159:658–665. Medline. doi:10.1001/archinte.159.7.658 PubMedCrossRefGoogle Scholar
  81. 81.
    Lim CF, Curtis AJ, Barlow JW, Topliss DJ, Stockigt JR (1991) Interactions between oleic acid and drug competitors influence specific binding of thyroxine in serum. J Clin Endocrinol Metab 73:1106–1110. MedlinePubMedGoogle Scholar
  82. 82.
    Becker KL (1995) Euthyroid sick syndrome. In: Becker KL (ed) Principles and practice of endocrinology and metabolism, 2nd edn. Lippincott, Philadelphia, 1786 ppGoogle Scholar
  83. 83.
    Franklyn JA, Black EG, Betteridge J, Sheppard MC (1994) Comparison of second and third generation methods for measurement of serum thyrotropin in patients with overt hyperthyroidism, patients receiving thyroxine therapy, and those with nonthyroidal illness. J Clin Endocrinol Metab 78:1368–1371. Medline. doi:10.1210/jc.78.6.1368 PubMedCrossRefGoogle Scholar
  84. 84.
    Christ-Crain M, Meier C, Roth CB, Huber P, Staub JJ, Müller B (2002) Basal TSH levels compared with TRH-stimulated TSH levels to diagnose different degrees of TSH suppression: diagnostic and therapeutic impact of assay performance. Eur J Clin Invest 32:931–937. Medline. doi:10.1046/j.1365-2362.2002.01065.x PubMedCrossRefGoogle Scholar
  85. 85.
    Surks MI, Sievert R (1995) Drugs and thyroid function. N Engl J Med 333:1688–1694. Medline. doi:10.1056/NEJM199512213332507 PubMedCrossRefGoogle Scholar
  86. 86.
    Agha A, Rogers B, Mylotte D et al (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60:584–591. Medline. doi:10.1111/j.1365-2265.2004.02023.x CrossRefGoogle Scholar
  87. 87.
    Spencer CA, LoPresti JS, Patel A et al (1990) Application of a new chemiluminometric thyrotropin assay to subnormal measurement. J Clin Endocrinol Metab 70:453–460. MedlinePubMedGoogle Scholar
  88. 88.
    Fliers E, Alkemade A, Wiersinga WM (2001) The hypothalamic–pituitary–thyroid axis in critical illness. Best Pract Res Clin Endocrinol Metab 15:453–464. Medline. doi:10.1053/beem.2001.0163 PubMedCrossRefGoogle Scholar
  89. 89.
    Spencer C, Eigen A, Shen D et al (1987) Specificity of sensitive assays of thyrotropin (TSH) used to screen for thyroid disease in hospitalized patients. Clin Chem 33:1391–1396. MedlinePubMedGoogle Scholar
  90. 90.
    Van den Berghe G (2003) Endocrine evaluation of patients with critical illness. Endocrinol Metab Clin North Am 32:385–410. Medline. doi:10.1016/S0889-8529(03)00005-7 PubMedCrossRefGoogle Scholar
  91. 91.
    Wartofsky L, Burman KD (1982) Alterations in thyroid function in patients with systemic illness: the “euthyroid sick syndrome”. Endocr Rev 3:164–217. MedlinePubMedGoogle Scholar
  92. 92.
    Spaulding SW, Gregerman RI (1972) Free thyroxine in serum by equilibrium dialysis: effects of dilution, specific ions and inhibitors of binding. J Clin Endocrinol Metab 34:974–982. MedlinePubMedGoogle Scholar
  93. 93.
    Duntas L, Wolf CF, Keck FS, Rosenthal J (1992) Thyrotropin-releasing hormone: pharmacokinetic and pharmacodynamic properties in chronic renal failure. Clin Nephrol 38:214–218. MedlinePubMedGoogle Scholar
  94. 94.
    Dobs AS, Dempsey MA, Ladenson PW, Polk BF (1988) Endocrine disorders in men infected with the human immunodeficiency virus. Am J Med 84:611–616. Medline. doi:10.1016/0002-9343(88)90144-1 PubMedCrossRefGoogle Scholar
  95. 95.
    Sellmeyer DE, Grunfeld C (1996) Endocrine and metabolic disturbances in human immunodeficiency virus infection and the acquired immune deficiency syndrome. Endocr Rev 17:518–532. Medline. doi:10.1210/er.17.5.518 PubMedCrossRefGoogle Scholar
  96. 96.
    LoPresti JS, Fried JC, Spencer CA, Nicoloff JT (1989) Unique alterations of thyroid hormone indices in the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 110:970–975. MedlinePubMedGoogle Scholar
  97. 97.
    Merenich JA, McDermott MT, Asp AA, Harrison SM, Kidd GS (1990) Evidence of endocrine involvement early in the course of human immunodeficiency virus infection. J Clin Endocrinol Metab 70:566–571. MedlinePubMedGoogle Scholar
  98. 98.
    Golshan MM, McHenry CR, de Vente J, Kalajyian RC, Hsu RM, Tomashefski JF (1997) Acute suppurative thyroiditis and necrosis of the thyroid gland: a rare endocrine manifestation of acquired immunodeficiency syndrome. Surgery 121:593–596. Medline. doi:10.1016/S0039-6060(97)90118-5 PubMedCrossRefGoogle Scholar
  99. 99.
    Chopra IJ, Solomon DH, Huang TS (1990) Serum thyrotropin in hospitalized psychiatric patients: evidence for hyperthyrotropinemia as measured by an ultrasensitive thyrotropin assay. Metabolism 39:538–543. Medline. doi:10.1016/0026-0495(90)90014-4 PubMedCrossRefGoogle Scholar
  100. 100.
    Roca RP, Blackman MR, Ackerley MB et al (1990) Thyroid hormone elevations during acute psychiatric illness: relationship to severity and distinction from hyperthyroidism. Endocr Res 16:415. MedlinePubMedCrossRefGoogle Scholar
  101. 101.
    Jackson IM (1998) The thyroid axis and depression. Thyroid 8:951–956. MedlinePubMedCrossRefGoogle Scholar
  102. 102.
    Tamai H, Mori K, Matsubayashi S et al (1986) Hypothalamic–pituitary–thyroidal dysfunctions in anorexia nervosa. Psychother Psychosom 46:127–131. MedlinePubMedCrossRefGoogle Scholar
  103. 103.
    Hangaard J, Andersen M, Grodum E, Koldkjaer O, Hagen C (1996) Pulsatile thyrotropin secretion in patients with Addison’s disease during variable glucocorticoid therapy. J Clin Endocrinol Metab 81:2502–2507. Medline. doi:10.1210/jc.81.7.2502 PubMedCrossRefGoogle Scholar
  104. 104.
    Abdullatif HD, Ashraf AP (2006) Reversible subclinical hypothyroidism in the presence of adrenal insufficiency. Endocr Pract 12:572. MedlinePubMedGoogle Scholar
  105. 105.
    Karagiannis A, Harsoulis F (2005) Gonadal dysfunction in systemic diseases. Eur J Endocrinol 152:501–513. Medline. doi:10.1530/eje.1.01886 PubMedCrossRefGoogle Scholar
  106. 106.
    Handelsman DJ, Dong Q (1993) Hypothalamo–pituitary gonadal axis in chronic renal failure. Endocrinol Metab Clin North Am 22:145–161. MedlinePubMedGoogle Scholar
  107. 107.
    Madersbacher S, Grunberger T, Maier U (1994) Andrological status before and after liver transplantation. J Urol 151:1251–1254. MedlinePubMedGoogle Scholar
  108. 108.
    Samojlik E, Kirschner MA, Ribot S, Szmal E (1992) Changes in the hypothalamic–pituitary–gonadal axis in men after cadaver kidney transplantation and cyclosporine therapy. J Androl 13:332–336. MedlinePubMedGoogle Scholar
  109. 109.
    Baker HW, Burger HG, de Kretser DM et al (1976) A study of the endocrine manifestations of hepatic cirrhosis. Q J Med 45:145–178. MedlinePubMedGoogle Scholar
  110. 110.
    Noel GL, Suh HK, Stone JG, Frantz AG (1972) Human prolactin and growth hormone release during surgery and other conditions of stress. J Clin Endocrinol Metab 35:840–851. MedlinePubMedGoogle Scholar
  111. 111.
    Van den Berghe G, de Zegher F, Veldhuis JD et al (1997) Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol (Oxf) 47:599–612. Medline. doi:10.1046/j.1365-2265.1997.3371118.x CrossRefGoogle Scholar
  112. 112.
    Rivier C, Vale W (1989) In the rat, interleukin-1 alpha acts at the level of the brain and the gonads to interfere with gonadotropin and sex steroid secretion. Endocrinology 124:2105–2109. MedlinePubMedGoogle Scholar
  113. 113.
    Van den Berghe G, Baxter RC, Weekers F, Wouters P, Bowers CY, Veldhuis JD (2000) A paradoxical gender dissociation within the growth hormone/insulin-like growth factor I axis during protracted critical illness. J Clin Endocrinol Metab 85:183–192. Medline. doi:10.1210/jc.85.1.183 PubMedCrossRefGoogle Scholar
  114. 114.
    Clark JD, Raggatt PR, Edwards OM (1988) Hypothalamic hypogonadism following major head injury. Clin Endocrinol (Oxf) 29:153–165. MedlineCrossRefGoogle Scholar
  115. 115.
    Woolf PD, Hamill RW, McDonald JV, Lee LA, Kelly M (1986) Transient hypogonadotrophic hypogonadism after head trauma: effects on steroid precursors and correlation with sympathetic nervous system activity. Clin Endocrinol (Oxf) 25:265–274. MedlineCrossRefGoogle Scholar
  116. 116.
    Woolf PD, Hamill RW, McDonald JV, Lee LA, Kelly M (1985) Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab 60:444–450. MedlinePubMedGoogle Scholar
  117. 117.
    Schneider HJ, Schneider M, Saller B et al (2006) Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur J Endocrinol 154:259–265. Medline. doi:10.1530/eje.1.02071 PubMedCrossRefGoogle Scholar
  118. 118.
    Aimaretti G, Ambrosio MR, Di Somma C et al (2005) Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab 90:6085–6092. Medline. doi:10.1210/jc.2005-0504 PubMedCrossRefGoogle Scholar
  119. 119.
    Bondanelli M, Ambrosio M, Margutti A, Boldrini P, Basaglia N, Franceschetti P, Zatelli M, degli Uberti E (2002) Evidence for integrity of the growth hormone/insulin-like growth factor-1 axis in patients with severe head trauma during rehabilitation. Metabolism 51:1363–1369. Medline. doi:10.1053/meta.2002.34714 PubMedCrossRefGoogle Scholar
  120. 120.
    Lamberts SW, de Herder WW, van der Lely AJ (1998) Pituitary insufficiency. Lancet 352:127–134. MedlinePubMedGoogle Scholar
  121. 121.
    Snyder PJ (2004) Hypogonadism in elderly men: what to do until the evidence comes. N Engl J Med 350:440–442. Medline. doi:10.1056/NEJMp038207 PubMedCrossRefGoogle Scholar
  122. 122.
    Haddad PM, Wieck A (2004) Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 64:2291–2314. Medline. doi:10.2165/00003495-200464200-00003 PubMedCrossRefGoogle Scholar
  123. 123.
    Warren MP, Vu C (2003) Central causes of hypogonadism—functional and organic. Endocrinol Metab Clin North Am 32:593–612. Medline. doi:10.1016/S0889-8529(03)00042-2 PubMedCrossRefGoogle Scholar
  124. 124.
    Warren MP, Goodman LR (2003) Exercise-induced endocrine pathologies. J Endocrinol Invest 26:873–878. MedlinePubMedGoogle Scholar
  125. 125.
    Maria N, Colantoni A, van Thiel DH (2000) The liver and endocrine function. In: Becker KL, Valimaki MJ, Laitinen K, Tiitinen A, Steman UH, Ylostalo P (edS) Principles and practice of endocrinology and metabolism, 3rd edn, ch. 205. Lippincott Williams & Wilkins, Philadelphia, pp 1870–1885 Google Scholar
  126. 126.
    Saxena S, Meehan D, Coney P, Wimalasena J (1990) Ethanol has direct inhibitory effects on steroidogenesis in human granulosa cells: specific inhibition of LH action. Alcohol Clin Exp Res 14:522–527. Medline. doi:10.1111/j.1530-0277.1990.tb01192.x PubMedCrossRefGoogle Scholar
  127. 127.
    Palmer BF (1999) Sexual dysfunction in uremia. J Am Soc Nephrol 10:1381–1388. MedlinePubMedGoogle Scholar
  128. 128.
    Lim VS, Fang VS (1976) Restoration of plasma testosterone levels in uremic men with clomiphene citrate. J Clin Endocrinol Metab 43:1370–1377. MedlinePubMedCrossRefGoogle Scholar
  129. 129.
    Veldhuis JD, Wilkowski MJ, Zwart AD et al (1993) Evidence for attenuation of hypothalamic gonadotropin-releasing hormone (GnRH) impulse strength with preservation of GnRH pulse frequency in men with chronic renal failure. J Clin Endocrinol Metab 76:648–654. Medline. doi:10.1210/jc.76.3.648 PubMedCrossRefGoogle Scholar
  130. 130.
    Gomez F, de la Cueva R, Wauters JP, Lemarchand-Beraud T (1980) Endocrine abnormalities in patients undergoing long-term hemodialysis: the role of prolactin. Am J Med 68:522–530. Medline. doi:10.1016/0002-9343(80)90296-X PubMedCrossRefGoogle Scholar
  131. 131.
    Handelsman DJ (1985) Hypothalamic–pituitary–gonadal dysfunction in renal failure, dialysis and renal transplantation. Endocr Rev 6:151–182. MedlinePubMedGoogle Scholar
  132. 132.
    Jayasinghe Y, Grover SR, Zacharin M (2008) Current concepts in bone and reproductive health in adolescents with anorexia nervosa. BJOG 115:304–315. Medline. doi:10.1111/j.1471-0528.2007.01601.x PubMedCrossRefGoogle Scholar
  133. 133.
    Wheeler MJ, Crisp AH, Hsu LK, Chen CN (1983) Reproductive hormone changes during weight gain in male anorectics. Clin Endocrinol (Oxf) 18:423–429. MedlineCrossRefGoogle Scholar
  134. 134.
    Chan JL, Mantzoros CS (2005) Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 366:74–85. Medline. doi:10.1016/S0140-6736(05)66830-4 PubMedCrossRefGoogle Scholar
  135. 135.
    Amatruda JM, Hochstein M, Hsu TH, Lochwood DH (1982) Hypothalamic and pituitary dysfunction in obese males. Int J Obes 6:183–189. MedlinePubMedGoogle Scholar
  136. 136.
    Vermeulen A, Kaufman JM, Deslypere JP, Thomas G (1993) Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J Clin Endocrinol Metab 76:1140–1146. Medline. doi:10.1210/jc.76.5.1140 PubMedCrossRefGoogle Scholar
  137. 137.
    Poretsky L, Can S, Zumoff B (1995) Testicular dysfunction in human immunodeficiency virus-infected men. Metabolism 44:946–953. Medline. doi:10.1016/0026-0495(95)90250-3 PubMedCrossRefGoogle Scholar
  138. 138.
    Shah PN, Smith JR, Wells C, Barton SE, Kitchen VS, Steer PJ (1994) Menstrual symptoms in women infected by the human immunodeficiency virus. Obstet Gynecol 83:397–400. MedlinePubMedGoogle Scholar
  139. 139.
    Grinspoon S, Corcoran C, Miller K et al (1997) Body composition and endocrine function in women with acquired immunodeficiency syndrome wasting. J Clin Endocrinol Metab 82:1332–1337. Medline. doi:10.1210/jc.82.5.1332 PubMedCrossRefGoogle Scholar
  140. 140.
    Sinha-Hikim I, Arver S, Beall G et al (1998) The use of a sensitive equilibrium dialysis method for the measurement of free testosterone levels in healthy, cycling women and in human immunodeficiency virus-infected women [published erratum appears in J Clin Endocrinol Metab 83:2959]. J Clin Endocrinol Metab (1998) 83:1312–1318. Medline. doi:10.1210/jc.83.4.1312 CrossRefGoogle Scholar
  141. 141.
    Al-Rimawi HS, Jallad MF, Amarin ZO, Obeidat BR (2005) Hypothalamic–pituitary–gonadal function in adolescent females with beta-thalassemia major. Int J Gynaecol Obstet 90:44–47. Medline. doi:10.1016/j.ijgo.2005.03.024 PubMedCrossRefGoogle Scholar
  142. 142.
    Mesotten D, Van den Berghe G (2006) Changes within the GH/IGF-I/IGFBP axis in critical illness. Crit Care Clin 22:17–28. Medline. doi:10.1016/j.ccc.2005.09.002 PubMedCrossRefGoogle Scholar
  143. 143.
    Ross R, Miell J, Freeman E et al (1991) Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin Endocrinol (Oxf) 35:47–54. MedlineCrossRefGoogle Scholar
  144. 144.
    Bentham J, Rodriguez-Arnao J, Ross RJ (1993) Acquired growth hormone resistance in patients with hypercatabolism. Horm Res 40:87–91. MedlinePubMedGoogle Scholar
  145. 145.
    Mesotten D, Van den Berghe G (2006) Changes within the growth hormone/insulin-like growth factor I/IGF binding protein axis during critical illness. Endocrinol Metab Clin North Am 35:793–805. Medline. doi:10.1016/j.ecl.2006.09.010 PubMedCrossRefGoogle Scholar
  146. 146.
    Timmins AC, Cotterill AM, Hughes SC et al (1996) Critical illness is associated with low circulating concentrations of insulin-like growth factors-I and -II, alterations in insulin-like growth factor binding proteins, and induction of an insulin-like growth factor binding protein 3 protease. Crit Care Med 24:1460–1466. Medline. doi:10.1097/00003246-199609000-00006 PubMedCrossRefGoogle Scholar
  147. 147.
    Van den Berghe G, Baxter RC, Weekers F et al (2002) The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin Endocrinol (Oxf) 56:655–669. Medline. doi:10.1046/j.1365-2265.2002.01255.x CrossRefGoogle Scholar
  148. 148.
    Hackl JM, Gottardis M, Wieser Ch et al (1991) Endocrine abnormalities in severe traumatic brain injury. A cue to prognosis in severe craniocerebral trauma? Intensive Care Med 17:25–29. Medline. doi:10.1007/BF01708405 PubMedCrossRefGoogle Scholar
  149. 149.
    Della Corte F, Mancini A, Valle D et al (1998) Provocative hypothalamo–pituitary axis tests in severe head injury: correlation with severity and prognosis. Crit Care Med 26:1419–1426. Medline. doi:10.1097/00003246-199808000-00030 PubMedCrossRefGoogle Scholar
  150. 150.
    Urban RJ (2006) Hypopituitarism after acute brain injury. Growth Horm IGF Res 16(Suppl A):S25–S29PubMedCrossRefGoogle Scholar
  151. 151.
    Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, Stalla GK, Agha A (2007) Hypothalamopituitary dysfunction following traumatic brain injury and aneurismal subarachnoid hemorrhage: a systematic review. JAMA 298:1429–1438. Medline. doi:10.1001/jama.298.12.1429 PubMedCrossRefGoogle Scholar
  152. 152.
    Ho KK (2007) 2007 GH Deficiency Consensus Workshop Participants. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur J Endocrinol 157:695–700. Medline. doi:10.1530/EJE-07-0631 Google Scholar
  153. 153.
    Ghigo E, Aimaretti G, Corneli G (2007) Diagnosis of adult GH deficiency. Growth Horm IGF Res 2007 Aug 31 [Epub ahead of print]Google Scholar
  154. 154.
    Corneli G, Di Somma C, Baldelli R et al (2005) The cut-off limits of the GH response to GH-releasing hormone-arginine test related to body mass index. Eur J Endocrinol 153:257–264. Medline. doi:10.1530/eje.1.01967 PubMedCrossRefGoogle Scholar
  155. 155.
    Gómez JM, Espadero RM, Escobar-Jiménez F et al (2002) Growth hormone release after glucagon as a reliable test of growth hormone assessment in adults. Clin Endocrinol (Oxf) 56:329–334. Medline. doi:10.1046/j.1365-2265.2002.01472.x CrossRefGoogle Scholar
  156. 156.
    Popovic V, Leal A, Micic D et al (2000) GH-releasing hormone and GH-releasing peptide-6 for diagnostic testing in GH-deficient adults. Lancet 356:1137–1142. Medline. doi:10.1016/S0140-6736(00)02755-0 PubMedCrossRefGoogle Scholar
  157. 157.
    Kwan AY, Hartman ML (2007) IGF-I measurements in the diagnosis of adult growth hormone deficiency. Pituitary 10:151–157. Medline. doi:10.1007/s11102-007-0028-8 PubMedCrossRefGoogle Scholar
  158. 158.
    Bondanelli M, De Marinis L, Ambrosio MR, degli Uberti EC et al (2004) Occurrence of pituitary dysfunction following traumatic brain injury. J Neurotrauma 21:685–696. Medline. doi:10.1089/0897715041269713 PubMedCrossRefGoogle Scholar
  159. 159.
    Juul A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 13:113–170PubMedCrossRefGoogle Scholar
  160. 160.
    Duška F, Fric M, Pažout J, Waldauf P, Tuma P, Pachl J (2008) Frequent intravenous pulses of growth hormone together with alanylglutamine supplementation in prolonged critical illness after multiple trauma: effects on glucose control, plasma IGF-I and glutamine. Growth Horm IGF Res 18:82–87. Medline. doi:10.1016/j.ghir.2007.07.003 PubMedCrossRefGoogle Scholar
  161. 161.
    Weiss S, Henle P, Bidlingmaier M, Moghaddam A, Kasten P, Zimmermann G (2007) Systemic response of the GH/IGF-I axis in timely versus delayed fracture healing. Growth Horm IGF Res Oct 10 [Epub ahead of print]Google Scholar
  162. 162.
    Gianotti L, Lanfranco F, Ramunni J, Destefanis S, Ghigo E, Arvat E (2002) GH/IGF-I axis in anorexia nervosa. Eat Weight Disord 7:94–105. MedlinePubMedGoogle Scholar
  163. 163.
    Clauson PG, Brismar K, Hall K, Linnarsson R, Grill V (1998) Insulin-like growth factor-I and insulin-like growth factor binding protein-1 in a representative population of type 2 diabetic patients in Sweden. Scand J Clin Lab Invest 58:353–360. Medline. doi:10.1080/00365519850186544 PubMedCrossRefGoogle Scholar
  164. 164.
    Iglesias P, Díez JJ, Fernández-Reyes MJ et al (2004) Growth hormone, IGF-I and its binding proteins (IGFBP-1 and -3) in adult uraemic patients undergoing peritoneal dialysis and haemodialysis. Clin Endocrinol (Oxf) 60:741–749. Medline. doi:10.1111/j.1365-2265.2004.02049.x CrossRefGoogle Scholar
  165. 165.
    Wolthers OD, Juul A, Hansen M, Muller J, Pedersen S (1995) The insulin-like growth factor axis and collagen turnover in asthmatic children treated with inhaled budesonide. Acta Paediatr 84:393–397. Medline. doi:10.1111/j.1651-2227.1995.tb13657.x PubMedCrossRefGoogle Scholar
  166. 166.
    Cuneo RC, Hickman PE, Wallace JD et al (1995) Altered endogenous growth hormone secretory kinetics and diurnal GH-binding protein profiles in adults with chronic liver disease. Clin Endocrinol (Oxf) 43:265–275. MedlineCrossRefGoogle Scholar
  167. 167.
    Moller S, Becker U (1992) Insulin-like growth factor 1 and growth hormone in chronic liver disease. Dig Dis 10:239–248. MedlinePubMedGoogle Scholar
  168. 168.
    Mahesh S, Kaskel F (2008) Growth hormone axis in chronic kidney disease. Pediatr Nephrol 23:41–48. Medline. doi:10.1007/s00467-007-0527-x PubMedCrossRefGoogle Scholar
  169. 169.
    Tönshoff B, Veldhuis JD, Heinrich U, Mehls O (1995) Deconvolution analysis of spontaneous nocturnal growth hormone secretion in prepubertal children with chronic renal failure and with end stage renal disease. Pediatr Res 37:86–93. MedlinePubMedGoogle Scholar
  170. 170.
    Rodger RS, Dewar JH, Turner SJ, Watson MJ, Ward MK (1986) Anterior pituitary dysfunction in patients with chronic renal failure treated by hemodialysis or continuous ambulatory peritoneal dialysis. Nephron 43:169–172. MedlinePubMedCrossRefGoogle Scholar
  171. 171.
    Ramirez G, O’Neill WM Jr, Bloomer HA, Jubiz W (1978) Abnormalities in the regulation of growth hormone in chronic renal failure. Arch Intern Med 138:267–271. Medline. doi:10.1001/archinte.138.2.267 PubMedCrossRefGoogle Scholar
  172. 172.
    Díez JJ, Iglesias PL, Sastre J et al (1994) Influence of erythropoietin on paradoxical responses of growth hormone to thyrotropin-releasing hormone in uremic patients. Kidney Int 46:1387–1391. Medline. doi:10.1038/ki.1994.409 PubMedCrossRefGoogle Scholar
  173. 173.
    Misra M, Miller KK, Herzog DB et al (2004) Growth hormone and ghrelin responses to an oral glucose load in adolescent girls with anorexia nervosa and controls. J Clin Endocrinol Metab 89:1605–1612. Medline. doi:10.1210/jc.2003-031861 PubMedCrossRefGoogle Scholar
  174. 174.
    Fassino S, Lanfranco F, Abbate Daga G et al (2003) Prolonged treatment with glycerophosphocholine, an acetylcholine precursor, does not disclose the potentiating effect of cholinesterase inhibitors on GHRH-induced somatotroph secretion in anorexia nervosa. J Endocrinol Invest 26:503–507. MedlinePubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marta Bondanelli
    • 1
  • Maria Chiara Zatelli
    • 1
  • Maria Rosaria Ambrosio
    • 1
  • Ettore C. degli Uberti
    • 1
  1. 1.Section of Endocrinology, Department of Biomedical Sciences and Advanced TherapiesUniversity of FerraraFerraraItaly

Personalised recommendations