Advertisement

Phytochemistry Reviews

, Volume 18, Issue 5, pp 1255–1275 | Cite as

Plant secondary metabolites against arthropods of medical importance

  • Nikoletta NtalliEmail author
  • George Koliopoulos
  • Athanasios Giatropoulos
  • Urania Menkissoglu-Spiroudi
Article

Abstract

Natural compounds of botanical origin are increasingly being investigated for the development of novel biocides. Intensive use of synthetic biocides and the confined array of chemical classes in use has led to the buildup of unwanted residues and to parasites’ adaptive responses and resistance. Meanwhile, the geographic and host ranges of arthropod vectors and vector-borne diseases are broadening. In an effort to develop “friendly” biocidal compounds for the environment and human health, plant secondary metabolites originating in a number of botanical families could be engaged. This mini-review compiles the recently available knowledge on plant secondary metabolites exhibiting biocidal properties and provides a brief overview on their activity against arthropods with a focus on toxic and repellent properties. The selected examples show that it is valuable to consider plants as a promising source for new products development to support the fight against arthropods related to human health. Finally, we outline the biocides regulatory framework in the European Union (EU) and pinpoint some issues of concern regarding the development of low risk biocides.

Graphic abstract

Plant secondary metabolites acting against arthropods of medical importance

Keywords

Biocidal Cockroaches Mosquitoes Flies Ticks 

Notes

Acknowledgements

We gratefully acknowledge Dr. Keith Matthiews, Of Counsel at Wiley Rein LLP, Washington, District Of Columbia and former Director of the Biopesticides and Pollution Prevention Division (BPPD) in the U.S. Environmental Protection Agency’s (EPA) Office of Pesticide Programs (OPP) for extensively performing language editing in the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Addesso KM, Oliver JB, O’Neal PA, Youssef N (2017) Efficacy of nootka oil as a biopesticide for management of imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 110:1547–1555CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adenubi OT, Ahmed AS, Fasina FO, McGaw LJ, Eloff JN, Naidoo V (2018) Pesticidal plants as a possible alternative to synthetic acaricides in tick control: a systematic review and meta-analysis. Ind Crops Prod 123:779–806CrossRefGoogle Scholar
  3. Ali A, Cantrell CL, Khan IA (2017) A new in vitro bioassay system for the discovery and quantitative evaluation of mosquito repellents. J Med Entomol 54:1328–1336CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez Montes de Oca DM, de la Fuente JL, Montes Villarrubia, de Oca OL, de San Menéndez, Pedro JC, Losada EO (1996) The biological activity of Ricinus communis on the housefly (Musca domestica). Rev Cubana Med Trop 48:192–194PubMedPubMedCentralGoogle Scholar
  5. Balabanidou V, Kampouraki A, Maclean M, Blomquist GJ, Tittiger C, Juárez MP, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci USA 113:9268–9273CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baldacchino F, Tramut C, Salem A, Liénard E, Delétré E, Franc M, Martin T, Duvallet G, Jay-Robert P (2013) The repellency of lemongrass oil against stable flies, tested using video tracking. Parasite 20:21CrossRefPubMedPubMedCentralGoogle Scholar
  7. Becker N, Petrić D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A (2010) Mosquitoes and their control. Springer, HeidelbergCrossRefGoogle Scholar
  8. Bell William J, Adiyodi KG (1981) American Cockroach. Springer. p. 4. ISBN 978-0-412-16140-7Google Scholar
  9. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefPubMedPubMedCentralGoogle Scholar
  10. Benelli G, Pavela R (2018) Beyond mosquitoes-Essential oil toxicity and repellency against bloodsucking insects. Ind Crops Prod 117:382–392CrossRefGoogle Scholar
  11. Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115:2545–2560CrossRefPubMedPubMedCentralGoogle Scholar
  12. Benelli G, Pavela R, Petrelli R, Cappellacci L, Canale A, Senthil-Nathan S, Maggi F (2018a) Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crop Prod 124:236–243CrossRefGoogle Scholar
  13. Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F (2018b) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crop Prod 122:308–315CrossRefGoogle Scholar
  14. Bernton HS, Brown H (1964) Insect Allergy Preliminary Studies of the Cockroach. J Allergy 35:506–513CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bisseleua HBD, Gbewonyo SWK, Obeng-Ofori D (2008) Toxicity, growth regulatory and repellent activities of medicinal plant extracts on Musca domestica L. (Diptera: Muscidea). Afr J Biotechnol 7:4635–4642Google Scholar
  16. Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins—a review. Environ Sci Pollut Control Ser 14:30–38Google Scholar
  17. Bukhari T, Takken W, Githeko AK, Koenraadt CJM (2011) Efficacy of Aquatain, a monomolecular film, for the control of malaria vectors in rice paddies. PLoS ONE 6:e21713CrossRefPubMedPubMedCentralGoogle Scholar
  18. Capinera JL, Sanchez-Arroyo H (2017) House fly, Musca domestica Linnaeus (Insecta: Diptera: Muscidae). EENY-048, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date August 1998. Revised June 2014 and April 2017Google Scholar
  19. Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB (2018) Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ Int 113:214–230CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen J (2009) Repellency of an over-the-counter essential oil product in China against workers of red imported fire ants. J Agric Food Chem 57:618–622CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coles TB, Dryden MW (2014) Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasit Vectors 7:8CrossRefPubMedPubMedCentralGoogle Scholar
  22. David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18CrossRefPubMedPubMedCentralGoogle Scholar
  23. De Batista LCSO, Cid YP, De Almeida AP, Prudêncio ER, Riger CJ, De Souza MAA, Coumendouros K, Chaves DSA (2016) In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 143:627–638CrossRefPubMedPubMedCentralGoogle Scholar
  24. de Oliveira PR, Anholeto LA, Rodrigues RAF, Bechara GH, de Carvalho Castro KN, Camargo Mathias MI (2018) The potential of Acmella oleracea (Jambu) extract in the control of semi-engorged Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) female ticks. Int J Acarol 44:192–197CrossRefGoogle Scholar
  25. Dinesh DS, Kumari S, Kumar V, Das P (2014) The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: psychodidae): a review. J Vector Borne Dis 51:1–7PubMedPubMedCentralGoogle Scholar
  26. El Zayyat EA, Soliman MI, Elleboudy NA, Ofaa SE (2015) Musca domestica laboratory susceptibility to three ethnobotanical culinary plants. Environ Sci Pollut R 22:15844–15852CrossRefGoogle Scholar
  27. Elgderi RM, Ghenghesh KS, Berbash N (2006) Carriage by the German cockroach (Blattella germanica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospitals and households in Tripoli, Libya. Ann Trop Med Parasitol 100:55–62CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eller FJ, Meer RKV, Behle RW, Flor-Weiler LB, Palmquist DE (2014) Bioactivity of cedarwood oil and cedrol against arthropod pests. Environ Entomol 43:762–766CrossRefPubMedPubMedCentralGoogle Scholar
  29. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Toxicol Pharmacol 130:325–337Google Scholar
  30. Evergetis E, Michaelakis A, Papachristos DP, Badieritakis E, Kapsaski-Kanelli VN, Haroutounian SA (2016) Seasonal variation and bioactivity of the essential oils of two Juniperus species against Aedes (Stegomyia) albopictus (Skuse, 1894). Parasitol Res 115:2175–2183CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fallatah SA, Khater EI (2010) Potential of medicinal plants in mosquito control. J Egypt Soc Parasitol 40:1–26PubMedPubMedCentralGoogle Scholar
  32. Fischer A, Ayasse M, Andrade MCB (2018) Natural compounds as spider repellents: fact or myth? J Econ Entomol 111:314–318CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fu JT, Tang L, Li WS, Wang K, Cheng DM, Zhang ZX (2015) Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J Insect Sci 15:129CrossRefPubMedPubMedCentralGoogle Scholar
  34. George DR, Finn RD, Graham KM, Sparagano OAE (2014) Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites Vectors 710Google Scholar
  35. Ghavami MB, Poorrastgoo F, Taghiloo B, Mohammadi J (2017) Repellency effect of essential oils of some native plants and synthetic repellents against human flea, Pulex irritans (Siphonaptera: Pulicidae). J Arthropod-Borne Di 11:105–115Google Scholar
  36. Ghayempour S, Montazer M (2016) Micro/nanoencapsulation of essential oils and fragrances: focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencaps 33:497–510CrossRefGoogle Scholar
  37. Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, Michaelakis A (2012) Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res 111:2253–2263CrossRefPubMedPubMedCentralGoogle Scholar
  38. Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123CrossRefPubMedPubMedCentralGoogle Scholar
  39. Giatropoulos A, Kimbaris A, Michaelakis Α, Papachristos DP, Polissiou MG, Emmanouel N (2018) Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitol Res 117:1953–1964CrossRefPubMedPubMedCentralGoogle Scholar
  40. Goode P, Ellse L, Wall R (2018) Preventing tick attachment to dogs using essential oils. Ticks Tick-borne Dis 9:921–926CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hailesillassie T, Bisrat D, Asres K (2018) Larvicidal effect of the leaf latex of Aloe yavellana Reynolds and its major compounds against Amblyomma variegatum (Ixodidae). Vet Parasitol 263:23–26CrossRefPubMedPubMedCentralGoogle Scholar
  42. Haselton AT, Acevedo A, Kuruvilla J, Werner E, Kiernan J, Dhar P (2015) Repellency of α-pinene against the house fly, Musca domestica. Phytochemistry 117:469–475CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45:371–391CrossRefGoogle Scholar
  44. Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298:96–97CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hu W, Zhang N, Chen H, Zhong B, Yang A, Kuang F, Ouyang Z, Chun J (2017) Fumigant activity of sweet orange essential oil fractions against red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 110:1556–1562CrossRefPubMedPubMedCentralGoogle Scholar
  46. Huang S, Zhang Z, Li Y, Li Y, Xu H (2010) Anti-insect activity of the Methanol extracts of fern and gymnosperm. Agric Sci China 9:249–256CrossRefGoogle Scholar
  47. Insecticide Resistance Action Committee (IRAC) Database. http://www.irac-online.org. Accessed 12 April 2019
  48. Isman M (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  49. Isman M (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66CrossRefPubMedPubMedCentralGoogle Scholar
  50. Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204CrossRefGoogle Scholar
  51. Issakul K, Kongtrakoon W, Dheeranupatana S, Jangsutthivorawat S, Jatisatienr A (2004) Insecticidal effectiveness of compounds from Mammea siamensis Kost. Against Musca domestica Linn. Acta Hortic 629:103–107CrossRefGoogle Scholar
  52. Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M (2017) Molecular targets for components of essential oils. Molecules.  https://doi.org/10.3390/molecules23010034 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jia M, He Q, Wang W, Dai J, Zhu L (2018) Chemical composition and acaricidal activity of Arisaema anurans essential oil and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 261:59–66CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kapsaski-Kanelli VN, Evergetis E, Michaelakis A, Papachristos DP, Myrtsi ED, Koulocheri SD, Haroutounian SA (2017) “gold” pressed essential oil: an essay on the volatile fragment from citrus juice industry by-products chemistry and bioactivity. BioMed Res Intern Article number 2761461Google Scholar
  55. Karchesy JJ, Kelsey RG, González-Hernández MP (2018) Yellow-cedar Callitropsis (Chamaecyparis) nootkatensis, secondary metabolites, biological activities, and chemical ecology. J Chem Ecol 44:510–524CrossRefPubMedPubMedCentralGoogle Scholar
  56. Karmegam N, Sakthivadivel M, Anuradha V, Thilagavathy D (1997) Indigenous-plant extracts as larvicidal agents against Culex quinquefasciatus Say. Bioresour Technol 59:137–140CrossRefGoogle Scholar
  57. Karunamoorthi K, Sabesan S (2013) Insecticide resistance in insect vectors of disease with special reference to mosquitoes: a potential threat to global public health. J Health Sco 2:4–18CrossRefGoogle Scholar
  58. Kedia A, Prakash B, Mishra PK, Singh P, Dubey NK (2015) Botanicals as ecofriendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: bruchidae)—a review. J Food Sci Technol Mysore 52:1239–1257CrossRefGoogle Scholar
  59. Khan I, Qamar A, Mehdi SH, Shahid M (2011) Histopathological effects of Datura alba leaf extract on the midgut of Periplaneta americana. J Biol Med 3:260–264Google Scholar
  60. Khan HAA, Akram W, Shad SA (2013) Resistance to conventional insecticides in Pakistani populations of Musca domestica L. (Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicology 22:522–527CrossRefPubMedPubMedCentralGoogle Scholar
  61. Khanna S, Chakraborty JN (2018) Mosquito repellent activity of cotton functionalized with inclusion complexes of β-cyclodextrin citrate and essential oils. J Fash Textiles 5:9CrossRefGoogle Scholar
  62. Khatter NA (2012) Morphogenetic abnormalities of Musca domestica vicina induced by glycosidic groups from Calotropis procera plant. Life Sci J 9:781–788Google Scholar
  63. Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kuo PM, Chu FH, Chang ST, Hsiao WF, Wang SY (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung 61:595–599CrossRefGoogle Scholar
  66. Kutrup B (2003) Cockroach infestation in some hospitals in Trabzon, Turkey. Turk J Zool 27:73–77Google Scholar
  67. Lachance S, Shiell J, Guerin MT, Scott-Dupree C (2017) Effectiveness of naturally occurring substances added to duck litter in reducing emergence and landing of adult Musca domestica (Diptera: Muscidae). J Econ Entomol 110:288–297PubMedPubMedCentralGoogle Scholar
  68. Lee S-H, Do H-S, Min K-J (2015) Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE. 10, Article number e0143450Google Scholar
  69. Leyva M, Tacoronte JE, Marquetti MDC (2007) Chemical composition and lethal effect of essential oil from Pimenta racemosa (Myrtales: Myrtaceae) on Blattella germanica (Dictyoptera: Blattellidae). Rev Cubana Med Trop 59:154–158PubMedPubMedCentralGoogle Scholar
  70. Lima de Souza JR, Remedio RN, Arnosti A, de Abreu RMM, Camargo-Mathias MI (2017) The effects of neem oil (Azadirachta indica A. JUSS) enriched with different concentrations of azadirachtin on the integument of semi-engorged Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. Microsc Res Techniq 80:838–844CrossRefGoogle Scholar
  71. Lima de Souza JR, Oliveira PRD, Anholeto LA, Arnosti A, Daemon E, Remedio RN, Camargo-Mathias MI (2019) Effects of carvacrol on oocyte development in semi-engorged Rhipicephalus sanguineus sensu lato females ticks (Acari: Ixodidae). Micron 116:66–72CrossRefPubMedPubMedCentralGoogle Scholar
  72. Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM (2015) In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: a review. Food Chem Toxicol 81:9–27CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mansour SA, Mohamed RI (2012) Biochemical and toxicological studies on the adults of Musca domestica L. Using conventional insecticides and botanical extracts. Biopest Inter 8:1–17Google Scholar
  74. Mansour SA, Mohamed RI (2013) Insecticidal properties and chemical composition of Conyza aegyptiaca (L.) oil: studies on two dipterous insect pests. Open Tox J 5:1–7CrossRefGoogle Scholar
  75. Mansour SA, Bakr RFA, Mohamed RI, Hasaneen NM (2011) Larvicidal activity of some botanical extracts, commercial insecticides and their binary mixtures against the housefly, Musca Domestica L. The Open Tox J 4:1–13Google Scholar
  76. Marchand AP (2015) Basic Substances: an opportunity for approval of low concern substances under EU pesticide regulation. Pest Manag Sci 71:1197–1200CrossRefPubMedPubMedCentralGoogle Scholar
  77. Marchand AP (2016) Basic substances under EC 1107/2009 phytochemical regulation: experience with non-biocide and food products as biorationals. J Plant Prot Res 3:312–318CrossRefGoogle Scholar
  78. Marchand AP (2017) Basic and low-risk substances under European Union pesticide regulations: a new choice for biorational portfolios of small and medium-sized enterprises. J Plant Prot Res 57:433–440Google Scholar
  79. Masetti A (2016) The potential use of essential oils against mosquito larvae: a short review. Bull Insectol 69:307–310Google Scholar
  80. Mavridis K, Wipf N, Müller P, Traoré MM, Muller G, Vontas J (2018) Detection and monitoring of insecticide resistance mutations in anopheles gambiae: individual vs pooled specimens. Genes 9:1–10CrossRefGoogle Scholar
  81. Mehmood F, Khan Z-UD, Manzoor F, Jamil M (2016) Analysis of insect toxicity and repellent activity of phytochemicals from Skimmia laureola, Nair against black garden ant, Lasius niger of Pakistan. Pak J Pharm Sci 29:789–793PubMedPubMedCentralGoogle Scholar
  82. Mengoni SL, Alzogaray RA (2018) Deltamethrin-resistant German cockroaches are less sensitive to the insect repellents DEET and IR3535 than non-resistant individuals. J Econ Entomol 111:836–843CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mills C, Cleary BJ, Gilmer JF, Walsh JJ (2004) Inhibition of acetylcholinesterase by tea tree oil. J Pharm Pharmacol 56:375–379CrossRefPubMedPubMedCentralGoogle Scholar
  84. Moreira MD, Picanço MC, Barbosa LCA, Guedes RNC, Barros EC, Campos MR (2007) Compounds from Ageratum conyzoides: isolation, structural elucidation and insecticidal activity. Pest Manag Sci 63:615–621CrossRefPubMedPubMedCentralGoogle Scholar
  85. Morey RA, Khandagle AJ (2012) Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L. Parasitol Res 111:1799–1805CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mossa ATH (2016) Green pesticides: essential oils as biopesticides in insect-pest management. J Environ Sci Tech 9:354–378CrossRefGoogle Scholar
  87. Muhaimin M, Yusnaidar Y, Syahri W, Latief M, Utami A, Bemis R, Amanda H, Heriyanti Chaerunisaa AY (2018) Screening and potential analysis of methanolic leaf extract of mangrove plants at east coast sumatera as repellent against Aedes aegypti. J Pharm Sci Res 10:2228–2231Google Scholar
  88. Noutcha MEA, Edwin-Wosu NI, Ogali RE, Okiwelu SN (2016) The Role of plant essential oils in mosquito (Diptera: Culicidae) control. Ann Res Rev Biol. 10:1–9CrossRefGoogle Scholar
  89. Novato T, Gomes GA, Zeringóta V, Franco CT, de Oliveira DR, Melo D, de Carvalho MG, Daemon E, de Oliveira Monteiro CM (2018) In vitro assessment of the acaricidal activity of carvacrol, thymol, eugenol and their acetylated derivatives on Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 260:1–4CrossRefPubMedPubMedCentralGoogle Scholar
  90. Olaleye T, Muse W, Adekanbi S, Isang D, Alabi I, Imeh-Nathaniel A, Nathaniel T (2017) Powdered leaf extracts of Harungana madagascariensis, Margaritaria discoidea, and Antigonon leptopus disrupt larva and pupa stages of a tropical disease vector. Asian Pac J Trop Med. 7:778–782CrossRefGoogle Scholar
  91. Patience GS, Karirekinyana G, Galli F, Patience N, Kubwabo C, Collin G, Bizimana JC, Boffito DC (2018) Sustainable manufacture of insect repellents derived from Nepeta cataria. Sci Rep 8:2235.  https://doi.org/10.1038/s41598-017-18141-z CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187CrossRefGoogle Scholar
  94. Pavela R (2016) Encapsulation—a convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Curr Org Chem 20:2674–2680CrossRefGoogle Scholar
  95. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007CrossRefPubMedPubMedCentralGoogle Scholar
  96. Pavlidi N, Vontas J, Van Leeuwen T (2018) The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr Opin Insect Sci 27:97–102CrossRefPubMedPubMedCentralGoogle Scholar
  97. Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006657.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Prodhan ZH, Biswas M, Rahman M, Islam N, Golam F (2012) Effects of plant extracts on salivary gland chromosomes of house fly (Musca domestica L.). Life Sci J 9:1930–1935Google Scholar
  99. Rathnasagar K, Thiyagaraj A (2018) Larvicidal activity of Lantana indica and Vitex negundo on Culex quinquefasciatus. Asian J Pharm Clin Res 11:414–418Google Scholar
  100. Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a highstakes world. Ann Rev Entomol 57:405–424CrossRefGoogle Scholar
  101. Regulation (EU) No 528/2012 of the European Parlament and of the council of 22 May 2012 concerning the making available on the market and use of biocidal products (OJ L 167, 27.6.2012, p. 1)Google Scholar
  102. Rey D, Pautou MP, Meyran JC (1999) Histopathological effects of tannic acid on the midgut epithelium of some aquatic Diptera larvae. J Invertebr Pathol 73:173–181CrossRefPubMedPubMedCentralGoogle Scholar
  103. Rey JR, Walton WE, Wolfe RJ, Connelly CR, O’Connell SM, Berg J, Sakolsky-Hoopes GE, Laderman AD (2012) North American wetlands and mosquito control. Int J Environ Res Public Health 9:4537–4605CrossRefPubMedPubMedCentralGoogle Scholar
  104. Rivault C, Cloarec A, Le Guyader A (1993) Bacterial load of cockroaches in relation to urban environment. Epidemiol Infect 110:317–325CrossRefPubMedPubMedCentralGoogle Scholar
  105. Robinson W (2005) Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, Cambridge, p 480CrossRefGoogle Scholar
  106. Rust MK (2016) Insecticide resistance in fleas. Insects 7(1):10.  https://doi.org/10.3390/insects7010010 CrossRefPubMedCentralGoogle Scholar
  107. Scott JG (2017) Evolution of resistance to pyrethroid insecticides in Musca domestica. Pest Manag Sci 73:716–722CrossRefPubMedPubMedCentralGoogle Scholar
  108. Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166CrossRefPubMedPubMedCentralGoogle Scholar
  109. Shao HN, Zhang YL (2017) Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci Rep 7:5521CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sharma R, Goel A (2018) Development of insect repellent finish by a simple coacervation microencapsulation technique. Int J Cloth Sci Tech 30:152–158CrossRefGoogle Scholar
  111. Sims SR, Appel AG (2012) Efficacy of commercial baits and new active ingredients against firebrats and silverfish (zygentoma: Lepismatidae). J Econ Entomol 105:1385–1391CrossRefPubMedPubMedCentralGoogle Scholar
  112. Smith EH, Whitman RC (2007) NPMA field guide to structural pests. NPMA 2nd ednGoogle Scholar
  113. Stephen R (2019) Tick-borne encephalitis (TBE) in children in Europe: epidemiology, clinical outcome and comparison of vaccination recommendations. Ticks Tick Borne Dis 10:100–110CrossRefGoogle Scholar
  114. Su LC, Huang CG, Chang ST, Yang SH, Hsu SH, Wu WJ, Huang RN (2014) An improved bioassay facilitates the screening of repellents against cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Pest Manag Sci 70:264–270CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237PubMedPubMedCentralGoogle Scholar
  116. Tabari MA, Youssefi MR, Maggi F, Benelli G (2017) Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet Parasitol 245:86–91CrossRefPubMedPubMedCentralGoogle Scholar
  117. Tahir HM, Khizar F, Naseem S, Yaqoob R, Samiullah K (2016) Insecticide resistance in the ground spider, Pardosa sumatrana (Thorel, 1890; Araneae: Lycosidae). Arch Insect Biochem Physiol 93:55–64CrossRefPubMedPubMedCentralGoogle Scholar
  118. Tisgratog R, Sukkanon C, Grieco JP, Sanguanpong U, Chauhan KR, Coats JR, Chareonviriyaphap T (2018) Evaluation of the constituents of vetiver oil against Anopheles minimus (Diptera: Culicidae), a malaria vector in Thailand. J Med Entomol 55:193–199CrossRefPubMedPubMedCentralGoogle Scholar
  119. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf.  https://doi.org/10.1111/1541-4337.12006 CrossRefGoogle Scholar
  120. Unsworth NB, Stenos J, Graves SR, Faa AG, Cox E, Dyer JR, Boutlis CS, Lane AM, Shaw MD, Robson J, Nissen MD (2007) Flinders Island spotted fever rickettsioses caused by ‘marmionii’ strain of Rickettsia honei, Eastern Australia. Emerg Infect Dis 13:566–573CrossRefPubMedPubMedCentralGoogle Scholar
  121. Urzúa A, Santander R, Echeverría J, Villalobos C, Palacios SM, Rossi Y (2010) Insecticidal properties of Peumus boldus Mol. essential oil on the house fly, Musca domestica L. B Latinoam Caribe PL J 9:465–469Google Scholar
  122. Urzúa A, Modak B, Santander R, Heit C, Echeverría J (2013) Insecticidal properties of Heliotropium stenophyllum essential oil on the house fly, Musca domestica L. Bol latinoam Caribe Plantas Medic Aroma 12:196–200Google Scholar
  123. Vargas MV (2012) An update on published literature (period 1992-2010) and botanical categories on plant essential oils with effects on mosquitoes (Diptera: Culicidae). B Malariol Sasul Amb 52:143–193Google Scholar
  124. Vasconcelos VO, Costa EGL, Moreira VR, Morais-Costa F, Duarte ER (2018) Efficacy of plants extracts from the Cerrado against adult female of Dermacentor nitens (Acari: Ixodidae). Exp App Acarol 75:419–427CrossRefGoogle Scholar
  125. Wang S-Y, Lai W-C, Chu F-H, Lin C-T, Shen S-Y, Chang S-T (2006) Essential oil from the leaves of Cryptomeria japonica acts as a silverfish (Lepisma saccharina) repellent and insecticide. J Wood Sci 52:522–526CrossRefGoogle Scholar
  126. Wang XG, Li Q, Jiang SR, Li P, Yang JZ (2017) Chemical composition and insecticidal property of Myrsine stolonifera (Koidz.) walker (Family: Myrsinaceae) on Musca domestica (Diptera: Muscidae). Acta Trop 170:70–78CrossRefPubMedPubMedCentralGoogle Scholar
  127. Wanzala W, Hassanali A, Mukabana WR, Takken W (2018) The effect of essential oils of Tagetes minuta and Tithonia diversifolia on on-host behaviour of the brown ear tick Rhipicephalus appendiculatus. Livest Res Rural Dev. 30: Article #106. http://www.lrrd.org/lrrd30/6/sound30106.html
  128. Wen Y, Ma T, Chen X, Liu Z, Zhu C, Zhang Y, Strecker R, Henderson G, Hooper-Bùi LM, Chen X, Sun Z, Wen X, Wang C (2016) Essential balm: a strong repellent against foraging and defending red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 109:1827–1833CrossRefPubMedPubMedCentralGoogle Scholar
  129. Werdin González JO, Stefanazzi N, Murray AP, Ferrero AA, Fernández Band B (2015) Novel nano-insecticides based on essential oils to control the German cockroach. J Pest Sci 88:393–404CrossRefGoogle Scholar
  130. WHO (2006) Pesticides and their application: for the control of vectors and pests of public health importance. World Health Organization, 6th edGoogle Scholar
  131. WHO, 2015 Indoor Residual Spraying. An operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination, 2nd edGoogle Scholar
  132. Arnason JT, Sims SR, Scott IM. Natural products from plants as insecticides. Phytochem and Pharmacog ©Encyclopedia of Life Support Systems (EOLSS)Google Scholar
  133. Yilmaz YB, Tunaz H (2013) Fumigant toxicity of some plant essential oils and their selected monoterpenoid components against adult American cockroach, Periplaneta americana (Dictyoptera: Blattidae). Turkiye Entomoloji Dergisi 37:319–328Google Scholar
  134. Yoon C, Kang SH, Yang JO, Noh DJ, Indiragandhi P, Kim GH (2009) Repellent activity of citrus oils against the cockroaches Blattella germanica, Periplaneta americana and P. fuliginosa. J Pest Sci 34:77–88CrossRefGoogle Scholar
  135. Yusufoglu HS, Tabanca N, Bernier UR, Li AY, Salkini MA, Alqasoumi SI, Demirci B (2018) Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 26:860–864CrossRefPubMedPubMedCentralGoogle Scholar
  136. Zhu JJ, Cermak SC, Kenar JA, Brewer G, Haynes KF, Boxler D, Baker PD, Wang D, Wang C, Li AY, Xue RD, Shen Y, Wang F, Agramonte NM, Bernier UR, de Oliveira Filho JG, Borges LMF, Friesen K, Taylor DB (2018) Better than DEET repellent compounds derived from coconut oil. Sci Rep 8: Article number 14053Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Pesticide Control and Phytopharmacy, Laboratory of Biological Control of PesticidesBenaki Phytopathological InstituteAthensGreece
  2. 2.Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations