Demystifying the liverwort Radula marginata, a critical review on its taxonomy, genetics, cannabinoid phytochemistry and pharmacology

  • Tajammul HussainEmail author
  • Richard V. Espley
  • Jürg Gertsch
  • Tracey Whare
  • Felix Stehle
  • Oliver KayserEmail author


Radula marginata Taylor is a subtropical liverwort, endemic to the Northern island of New Zealand in the Pacific region. Despite its significant potential as an alternative source of a THC-like phytocannabinoid, the biosynthesis of this compound remains elusive. Following the discovery of a bibenzyl cis-tetrahydrocannabinol (perrottetinene) in R. marginata, research has focused on genetic fingerprinting and transcriptomic analysis for the genes involved in its biosynthesis. More recently, its pharmacological activity with the endocannabinoid receptors (CB1 and CB2) has been demonstrated, paving the way to more extensive research on this liverwort. Here, we provide an in-depth review of the current research. Firstly, we describe the taxonomy and phytogeography of R. marginata, followed by the symbiosis and evolutionary aspects of bryophytes in general, with a specific focus on liverworts. We then review the physiology and anatomy from scanning electron microscopy data. The presence of the oil bodies and their functional insights for the storage of secondary metabolites, such as perrottetinene, are illustrated. We review the available genetic and transcriptomic resources for R. marginata. We discuss pharmacological aspects of the natural bi-benzyl cis-perrottetinene as compared to THC. The reported partial agonistic activity of this compound at CB1 and CB2 receptors, and the need for further study for the treatment of inflammatory conditions, is considered. Moreover, given that THC has beneficial effects topically, we discuss the potential use of R. marginata for dermatological conditions. Finally, we elaborate on the ethnobotanical aspects and the legal and ethical position of plant collection in New Zealand. Overall, this review gives the first detailed overview of R. marginata. We include the morphology, taxonomy, anatomy, physiology, evolution as well as the genetic basis linking it with electron microscopic studies and its biological effects.


Radula marginata Liverworts Bryophyte Cannabinoids Tetrahydrocannabinolic acid Perrottetinenic acid 


Author’s contribution

TH designed the concept, performed literature search and wrote sections “Genetics, Genomics and Transcriptomic”, “Cannabinoids biosynthesis in Radula marginata” and “Symbiosis and evolutionary aspects”. RE wrote the section “Taxonomy and phytogeography” with OK. JG wrote paragraph “Pharmacology” and gave valuable comments to structure ethnomedical discussion. FS wrote “Physiology and Anatomy” and did SEM work. TW wrote “Perspectives on plant collection in New Zealand” along with RE and OK. OK supervised the study and all the authors contributed to the final manuscript.


  1. Asakawa Y (2004) Chemosystematics of the hepaticae. Phytochemistry 65:623–669. CrossRefGoogle Scholar
  2. Asakawa Y (2012) Liverwrts-potential source of medicinal compounds. Med Aromat plants 1:1–2. CrossRefGoogle Scholar
  3. Asakawa Y, Hashimoto T, Takikawa K et al (1991) Prenyl bibenzyls from the liverworts Radula perrottetii and Radula complanata. Phytochemistry 30:235–251. CrossRefGoogle Scholar
  4. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110. CrossRefGoogle Scholar
  5. Austin MB, Bowman ME, Ferrer J-L et al (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194. CrossRefGoogle Scholar
  6. Bidartondo MI, Read DJ, Trappe JM et al (2011) The dawn of symbiosis between plants and fungi. Biolgy Lett 7:574–577. CrossRefGoogle Scholar
  7. Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304. CrossRefGoogle Scholar
  8. Chicca A, Nicolussi S, Bartholomäus R et al (2017) Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc Natl Acad Sci 114:E5006–E5015. CrossRefGoogle Scholar
  9. Chicca A, Schafroth MA, Erni R et al (2018) Uncovering the psychoactivity of a cannabinoid from liverworts associated with a legal high. Sci Adv 4:1–11CrossRefGoogle Scholar
  10. Clayton WA, Albert NW, Thrimawithana AH et al (2018) UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. Plant J 96:503–517. CrossRefGoogle Scholar
  11. Cullmann F, Becker H (1999) Prenylated bibenzyls from the liverwort Radula laxiramea. Zeitschrift fur Naturforsch Sect C J Biosci 54:147–150. CrossRefGoogle Scholar
  12. Delaux P-M, Radhakrishnan GV, Jayaraman D et al (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci 112:13390–13395. CrossRefGoogle Scholar
  13. Edwards D, Duckett JE, Richardson JB (1995) Hepatic characters in the earliest land plants. Nature 374:635–636CrossRefGoogle Scholar
  14. Field KJ, Pressel S, Duckett JG et al (2015a) Symbiotic options for the conquest of land. Trends Ecol Evol 30:477–486. CrossRefGoogle Scholar
  15. Field KJ, Rimington WR, Bidartondo MI et al (2015b) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–756. CrossRefGoogle Scholar
  16. Field KJ, Rimington WR, Bidartondo MI et al (2016) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J 10:1514–1526. CrossRefGoogle Scholar
  17. Gachet MS, Schubert A, Calarco S et al (2017) Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci Rep 7:1–15. CrossRefGoogle Scholar
  18. Garbary DJ, Renzaglia KS, Duckett JG (1993) The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Syst Evol 188:237–269. CrossRefGoogle Scholar
  19. Graham LE (1993) Origin of land plants. John Wiley, New YorkGoogle Scholar
  20. Happyana N, Agnolet S, Muntendam R et al (2013) Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87:51–59. CrossRefGoogle Scholar
  21. He X, Sun Y, Zhu RL (2013) The oil bodies of liverworts: unique and important organelles in land plants. CRC Crit Rev Plant Sci 32:293–302. CrossRefGoogle Scholar
  22. Hodgson E (1944) New Zealand Hepaticae (Liverworts) IV A review of the New Zealand species of the genus Radula. Trans R Soc New Zeal 74(3):273–287Google Scholar
  23. Hussain T, Plunkett B, Ejaz M et al (2018) Identification of putative precursor genes for the biosynthesis of cannabinoid-like compound in Radula marginata. Front Plant Sci 9:1–17. CrossRefGoogle Scholar
  24. James TY, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822. CrossRefGoogle Scholar
  25. Karsak M, Gaffal E, Date R et al (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316:1494–1497. CrossRefGoogle Scholar
  26. Kenrick P (2017) How land plant life cycles first evolved. Science 358:1538–1539. CrossRefGoogle Scholar
  27. Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151. CrossRefGoogle Scholar
  28. Leonti M, Casu L, Raduner S et al (2010) Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin. Biochem Pharmacol 79:1815–1826. CrossRefGoogle Scholar
  29. Ligrone R, Duckett JG, Renzaglia KS (2012) Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot 109:851–871. CrossRefGoogle Scholar
  30. Lu R, Paul C, Basar S et al (2003) Sesquiterpene constituents from the liverwort Bazzania japonica. Phytochemistry 63:581–587. CrossRefGoogle Scholar
  31. Ludwiczuk A, Asakawa Y (2008) Chapter five: distribution of terpenoids and aromatic compounds in selected southern hemispheric liverworts. Fieldiana Bot 2008(47):37–58. CrossRefGoogle Scholar
  32. Ludwiczuk A, Asakawa Y (2014) Fingerprinting of secondary metabolites of liverworts: chemosystematic approach. J AOAC Int 97:1234–1243. CrossRefGoogle Scholar
  33. Marks MD, Tian L, Wenger JP et al (2009) Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 60:3715–3726. CrossRefGoogle Scholar
  34. Mishler BD, Churchill SP (1985) Cladistics and the land plants: a response to robinson. Brittonia 37:282–285CrossRefGoogle Scholar
  35. Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman FW, Kantz TS, Chapman RL (1994) Phylogenetic relationships of the “Green Algae” and “Bryophytes”. Ann Mo Bot Gard 81(3):451–483CrossRefGoogle Scholar
  36. Morris JL, Puttick MN, Clark JW et al (2018) The timescale of early land plant evolution. Proc Natl Acad Sci 115:201719588. CrossRefGoogle Scholar
  37. Nickrent DL, Parkinson CL, Palmer JD, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17:1885–1895. CrossRefGoogle Scholar
  38. Park BH, Lee YR (2010) Concise synthesis of perrottetinene with bibenzyl cannabinoid. Bull Korean Chem Soc 31:2712–2714. CrossRefGoogle Scholar
  39. Pihakaski K (1972) Histochemical studies on the oil bodies of the liverworts Pellia epiphylla and Bazzania tribobata. Ann Bot Fenn 9:65–76Google Scholar
  40. Pirozynski KA, Dalpe Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36Google Scholar
  41. Pressel S, Duckett JG, Ligrone R, Proctor MCF (2009) Effects of de- and rehydration in desiccation-tolerant liverworts: a cytological and physiological study. Int J Plant Sci 170:182–199. CrossRefGoogle Scholar
  42. Pressel S, Bidartondo MI, Ligrone R, Duckett JG (2014) Fungal symbioses in bryophytes: new insights in the Twenty First Century. Phytotaxa 9:238. CrossRefGoogle Scholar
  43. Qiu YL, Cho Y, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674. CrossRefGoogle Scholar
  44. Qiu Y-L, Li L, Wang B et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci 103:15511–15516. CrossRefGoogle Scholar
  45. Qiu Y, Li L, Wang B et al (2007) A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci 168:691–708. CrossRefGoogle Scholar
  46. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843. CrossRefGoogle Scholar
  47. Rensing SA (2018) Great moments in evolution: the conquest of land by plants. Curr Opin Plant Biol 42:49–54. CrossRefGoogle Scholar
  48. Rensing SA, Lang D, Zimmer AD et al (2008) The physcomitrella genome reveals evolutionary insights into the conquest of land by plants Stefan. Science 319:64–69. CrossRefGoogle Scholar
  49. Renzaglia KS, Duff RJ, Nickrent DL et al (2000) Vegetative and reproductive innovations of early land plants : implications for a unified phylogeny. Philos Trans R Soc Lond 355:769–793. CrossRefGoogle Scholar
  50. Rubinstein CV, Gerrienne P, de la Puente GS et al (2010) Early middle ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369. CrossRefGoogle Scholar
  51. Ruhfel BR, Gitzendanner MA, Soltis PS et al (2014) From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. CrossRefGoogle Scholar
  52. Sabovljevic MS, Sabovljević AD, Ikram NKK et al (2016) Bryophytes - An emerging source for herbal remedies and chemical production. Plant Genet Resour Character Util 14:314–327. CrossRefGoogle Scholar
  53. Shaw J, Renzaglia K, Cargill C et al (2004) Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581. CrossRefGoogle Scholar
  54. Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, CambridgeGoogle Scholar
  55. Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 1:1. Google Scholar
  56. Tesso H, König WA, Asakawa Y (2005) Composition of the essential oil of the liverwort Radula perrottetii of Japanese origin. Phytochemistry 66:941–949. CrossRefGoogle Scholar
  57. Toyota M, Kinugawa T, Asakawa Y (1994a) Bibenzyl cannabinoid and bisbibenzyl derivative from the liverwort Radula perrottetii. Phytochemistry 37:859–862. CrossRefGoogle Scholar
  58. Toyota M, Kinugawa T, Asakawa YY (1994b) Bibenzyl cannabinoid and bisbibenzyl derivative from the Liverwort Radula Perrottetii. Phytochemistry 31:859–862. CrossRefGoogle Scholar
  59. Toyota M, Shimamura T, Ishii H et al (2002) New bibenzyl cannabinoid from the New Zealand liverwort Radula marginata. Chem Pharm Bull (Tokyo) 50:1390–1392. CrossRefGoogle Scholar
  60. Wakker JH (1888) Studien über die Inhaltsk orper der Pflanzenzelle. Jahrb. Jahrb wiss Bot 19:482–487Google Scholar
  61. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. CrossRefGoogle Scholar
  62. Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285. CrossRefGoogle Scholar
  63. Wickett NJ, Mirarab S, Nguyen N et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci 111:E4859–E4868. CrossRefGoogle Scholar
  64. Xie CF, Lou HX (2009) Secondary metabolites in bryophytes: an ecological aspect. Chem Biodivers 6:303–312. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Technical BiochemistryTechnical University DortmundDortmundGermany
  2. 2.The New Zealand Institute for Plant and Food Research Limited (PFR)AucklandNew Zealand
  3. 3.Institute of Biochemistry and Molecular Medicine, NCCR TransCureUniversity of BernBernSwitzerland
  4. 4.The University of AucklandAucklandNew Zealand

Personalised recommendations