Advertisement

Bioprospecting of plant natural products in Schleswig-Holstein (Germany) I: chemodiversity of the Cichorieae tribe (Asteraceae) in Schleswig-Holstein

  • Christian ZidornEmail author
Article

Abstract

Recent international developments make access to biological resources across international borders more difficult than in the past. Local access to biological resources, including plant natural products, thus becomes more important. In order to evaluate the opportunities to access bioactive natural products in our region, we here start a series of dedicated articles assessing the chemical diversity of plant taxa, native and naturalized, in the region of Schleswig-Holstein, Germany. The region has only a limited biodiversity with about 1500 species of higher plants growing in the wild. Our aims are the following: (1) A complete review of the natural products reported from taxa occurring in Schleswig-Holstein from any part of their distribution range. (2) Proof or disproof, whether these substances are also occurring in populations of the taxa at hand occurring in the wild in Schleswig-Holstein. (3) To establish analytical GLC-MS and/or HPLC-DAD-MS systems to identify and quantify these compounds. (4) Initiation of dedicated efforts to unravel the array of secondary metabolites contained in species from the Schleswig-Holstein region not yet investigated. (5) Search for chemically defined intraspecific taxa, i.e. chemically differing lineages of morphologically indistinguishable plant taxa, by comparing plants from Schleswig-Holstein with plants collected in other regions. The survey into the plant natural products’ chemodiversity of the flora of Schleswig-Holstein begins with a review of the natural products from Schleswig-Holstein members of the Cichorieae tribe of the Asteraceae family. The Cichorieae tribe of the Asteraceae family, which encompasses 94 genera and about 1500 species and innumerous microtaxa worldwide (Kilian et al. in Systematics, evolution and biogeography of the Compositae, IAPT, Vienna, 2009), is represented by only 17 genera in Schleswig-Holstein: Arnoseris, Chondrilla, Cicerbita, Cichorium, Crepis, Hieracium, Hypochaeris, Lactuca, Lapsana, Leontodon, Picris, Pilosella, Scorzonera, Scorzoneroides, Sonchus, Taraxacum, and Tragopogon. In total, 48 species (50 taxa including the two species with two distinct subspecies each in the region and treating the sections in the hyper-species-rich genus Taraxacum as species here), occur in Schleswig-Holstein. For all of the genera and all but six of the species (Hieracium fuscocinereum, Lactuca macrophylla, Sonchus palustris, and Taraxacum sections Celtica, Hamata, and Obliqua), the array of plant natural products has already been investigated to some degree. However, for only two taxa (Pilosella officinarum and Tragopogon pratensis subsp. minor) also plants from the region of Schleswig-Holstein have been studied and for only very few taxa, such as Cichorium intybus and Taraxacum officinale, all major classes of natural products have been investigated in detail so far.

Keywords

Asteraceae Tribe Cichorieae Bioprospecting Nagoya Protocol Plant chemosystematics Plant chemophenetics 

Notes

Acknowledgements

Many thanks are due to Dr. Erik Christensen (AG Geobotanik SH, Kiel; http://www.ag-geobotanik.de/) for fruitful discussions and support of the idea to review the phytochemistry/chemophenetics of the flora of Schleswig-Holstein step-by-step. Thanks are moreover due to Dr. Günter Gottschlich (Tübingen) for clarifying some aspects of Hieracium/Pilosella nomenclature and for collection details of Hieracium murorum investigated by Zidorn et al. (2001).

References

  1. Adekenov SM, Kadirberlina GM, Turdybekov KM, Struchkov YT (1991) Terpenoids of Crepis tectorum. Molecular and crystal structure of the sesquiterpene lactone 8-epide-acyl-cinaro-picrin. Khim Prir Soed 27:638–642Google Scholar
  2. Akyev BA, Ovezdurdyev A, Sham’yanov ID, Malikov VM (1990) Guaianolides of Lactuca tatarica. Chem Nat Comp 26:218–219CrossRefGoogle Scholar
  3. Alade GO, Moody JO, Awotona OR, Lai D, Adesanya SA, Proksch P (2017) Cichorin A: a benzo-isochromene from Nypa fruticans endophytic fungus Pestalotiopsis sp. Herba Pol 63:13–17CrossRefGoogle Scholar
  4. Atta-ur-Rahman Zareen S, Choudhary MI, Akhtar MN, Khan SN (2008) α-Glucosidase inhibitory activity of triterpenoids from Cichorium intybus. J Nat Prod 71:910–913CrossRefPubMedGoogle Scholar
  5. Bandyukova VA, Sergeeva NV, Dzhumyrko SF (1970) Luteolin glycosides in some plants of the family Compositae. Khim Prir Soed 6:470–471Google Scholar
  6. Bate-Smith EC, Sell PD, West C (1968) Chemistry and taxonomy of Hieracium L. and Pilosella Hill. Phytochemistry 7:1165–1169CrossRefGoogle Scholar
  7. Bohlmann F, Bohlmann R (1980) Three guaianolides from Hypochoeris radicata. Phytochemistry 19:2045–2046CrossRefGoogle Scholar
  8. Bondarenko VG, Glyzin VI, Shelyuto VL (1973) Flavonoids of the flowers of Sonchus arvense. Chem Nat Comp 9:522CrossRefGoogle Scholar
  9. Bondarenko VG, Glyzin VI, Ban’kovskii AI, Shelyuto VL (1974) Isocynaroside—a new flavone glycoside from Sonchus arvensis. Chem Nat Comp 10:680–681CrossRefGoogle Scholar
  10. Bondarenko VG, Glyzin VI, Shelyuto VL (1976) Flavonoids of Sonchus arvensis. Chem Nat Comp 12:484CrossRefGoogle Scholar
  11. Bondarenko VG, Glyzin VI, Shelyuto VL (1978) Sonchoside—a new flavonoid glycoside from Sonchus arvensis. Chem Nat Comp 14:340CrossRefGoogle Scholar
  12. Bondarenko VG, Glyzin VI, Shelyuto VL (1983) Flavonoids of the flowers of Sonchus oleraceus. Chem Nat Comp 19:228–229CrossRefGoogle Scholar
  13. Brändel M (2007) Ecology of achene dimorphism in Leontodon saxatilis. Ann Bot 100:1189–1197CrossRefPubMedPubMedCentralGoogle Scholar
  14. Buttler KP, Hand R (2008) Liste der Gefäßpflanzen Deutschlands. Kochia-Beiheft 1:1–107Google Scholar
  15. Carazzone C, Mascherpa D, Gazzani G, Papetti A (2013) Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatograpy with diode array detection and electrospray ionisation mass spectrometry. Food Chem 138:1062–1071CrossRefPubMedGoogle Scholar
  16. Christiansen W (1953) Neue kritische Flora von Schleswig-Holstein. Heinrich Möller, RendsburgGoogle Scholar
  17. Christiansen A, Christiansen W, Christiansen W (1922) Flora von Kiel. Wilhelm Handorff, Kiel, p 330Google Scholar
  18. Collins DJ, McGilvery DC (2019) Phytochemistry of Australian plants: a live geographically-inclusive database, freely available online. Phytochemistry 158:156CrossRefGoogle Scholar
  19. Deplazes-Zemp A, Abiven S, Schaber P, Schaepman M, Schaepman-Strub G, Schmid B, Shimizu KK, Altermatt F (2018) The Nagoya Protocol could backfire on the Global South. Nat Ecol Evol 2:917–919CrossRefPubMedGoogle Scholar
  20. Enke N, Gemeinholzer B, Zidorn C (2012) Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae). Org Divers Evol 12:1–16CrossRefGoogle Scholar
  21. Fazylova AS, Turdybekov KM, Kadirberlina GM, Rakhimova BB, Adekenov SM (2000) Molecular structure of crepidioside A and isolipidiol from Crepis multicaulis. Chem Nat Compd 36:177–180CrossRefGoogle Scholar
  22. Feulner M, Schuhwerk F, Doetterl S (2011) Taxonomical value of inflorescence scent in Hieracium s.str. Biochem Syst Ecol 39:732–743CrossRefGoogle Scholar
  23. Fiasson JL, Gluchoff-Fiasson K, Mugnier C, Barghi N, Siljak-Yakovlev S (1991) Flavonoid analysis of European species of the genus Hypochoeris (Asteraceae). Biochem Syst Ecol 19:157–162CrossRefGoogle Scholar
  24. Fontanel D, Galtier C, Viel C, Gueiffier A (1998) Caffeoyl quinic and tartaric acids and flavonoids from Lapsana communis L. subsp. communis (Asteraceae). Z Naturforsch 53c:1090–1092CrossRefGoogle Scholar
  25. Fontanel D, Galtier C, Debouzy J-C, Gueiffier A, Viel C (1999) Sesquiterpene lactone glycosides from Lapsana communis L. subsp. communis. Phytochemistry 51:999–1004CrossRefPubMedGoogle Scholar
  26. Frohne D, Jensen U (1998) Systematik des Pflanzenreiches, 5th edn. WVG, StuttgartGoogle Scholar
  27. Gawrónska-Grzywacz M, Krzaczek T (2009) Flavonoids and coumarins from Hieracium pilosella L. (Asteraceae). Acta Soc Bot Pol 78:189–195Google Scholar
  28. Gawrónska-Grzywacz M, Krzaczek T, Nowak R, Los R, Malm A, Cyranka M, Rzeski W (2011) Biological activity of new flavonoid from Hieracium pilosella L. Cent Eur J Biol 6:397–404Google Scholar
  29. Giambanelli E, D’Antuono LF, Ferioli F, Frenich AG, Romero-González R (2018) Sesquiterpene lactones and inositol 4-hydroxyphenylacetic acid derivatives in wild edible leafy vegetables from Central Italy. J Food Comp Anal 72:1–6CrossRefGoogle Scholar
  30. Giner RM, Recio M-C, Cuellar M-J, Máñez S, Peris JB, Stübing G, Mateu I, Ríos J-L (1993a) A taxonomical study of the subtribe Leontodontinae based on the distribution of phenolic compounds. Biochem Syst Ecol 21:613–616CrossRefGoogle Scholar
  31. Giner RM, Ubeda A, Just MJ, Serrano A, Máñez S, Ríos JL (1993b) A chemotaxonomic survey of Sonchus subgenus Sonchus. Biochem Syst Ecol 21:617–620CrossRefGoogle Scholar
  32. Granica S, Zidorn C (2015) Phenolic compounds from aerial parts as chemosystematic markers in the Scorzonerinae (Asteraceae). Biochem Syst Ecol 58:102–113CrossRefGoogle Scholar
  33. Grass S, Zidorn C, Blattner FR, Stuppner H (2006) Comparative molecular and phytochemical investigation of Leontodon autumnalis (Asteraceae, Lactuceae) populations from Central Europe. Phytochemistry 67:122–131CrossRefPubMedGoogle Scholar
  34. Guppy GA, Bohm BA (1976) Flavonoids of five Hieracium species of British Columbia. Biochem Syst Ecol 4:231–234CrossRefGoogle Scholar
  35. Harborne JB (1978) The rare flavone isoetin as a yellow flower pigment in Heywoodiella oligocephala and in other Cichorieae. Phytochemistry 17:915–917CrossRefGoogle Scholar
  36. Hooper SN, Chandler RF (1984) Herbal remedies of the maritime Indians: phytosterols and triterpenes of 67 plants. J Ethnopharm 10:181–194CrossRefGoogle Scholar
  37. Hooper SN, Chandler RF, Lewis E, Jamieson WD (1982) Simultaneous determination of Sonchus arvensis L. triterpenes by gas chromatography-mass spectrometry. Lipids 17:60–63CrossRefPubMedGoogle Scholar
  38. Hussain H, Hussain J, Saleem M, Miana GA, Riaz M, Krohn K, Anwar S (2011) Cichorin A: a new benzo-isochromene from Cichorium intybus. J Asian Nat Prod Res 13:566–569CrossRefPubMedGoogle Scholar
  39. Hussain H, Hussain J, Ali S, Al-Harrasi A, Saleem M, Miana GA, Riaz M, Anwar S, Hussain S, Ali L (2012) Cichorins B and C: two new benzo-isochromenes from Cichorium intybus. J Asian Nat Prod Res 14:297–300CrossRefPubMedGoogle Scholar
  40. Jäger EJ (2017) Rothmaler − Exkursionsflora von Deutschland, Grundband, 21st edn. Springer, BerlinCrossRefGoogle Scholar
  41. Kenny O, Smyth TJ, Hewage CM, Brunton NP, McLoughlin P (2014) 4-Hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC–SPE–NMR and LC–MS techniques. Phytochemistry 98:197–203CrossRefPubMedGoogle Scholar
  42. Kikuchi T, Tanaka A, Uriuda M, Yamada T, Tanaka R (2016) Three novel triterpenes from Taraxacum officinale roots. Molecules 21:1121CrossRefPubMedCentralGoogle Scholar
  43. Kilian N, Gemeinholzer B, Lack HW (2009) Tribe Cichorieae Lam. & DC. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, Evolution and Biogeography of the Compositae. IAPT, ViennaGoogle Scholar
  44. Kilian N, Hand R, Raab-Straube E von (eds) (2019) Cichorieae Systematics Portal. http://cichorieae.e-taxonomy.net/portal/. Accessed 18 Mar 2019
  45. Kirschner J, Štěpánek J (2011) Typification of Leontodon taraxacum L. (≡ Taraxacum officinale F.H. Wigg.) and the generic name Taraxacum: a review and a new typification proposal. Taxon 60:216–220CrossRefGoogle Scholar
  46. Kisiel W (1998) Flavonoids from Lactuca quercina and L. tatarica. Acta Soc Bot Pol 67:247–248CrossRefGoogle Scholar
  47. Kisiel W, Barszcz B (1995) Sesquiterpenes and phenolics from Mycelis muralis. Pol J Chem 69:1298–1300Google Scholar
  48. Kisiel W, Barszcz B (1998) A germacrolide glucoside from Lactuca tatarica. Phytochemistry 48:205–206CrossRefGoogle Scholar
  49. Kisiel W, Kohlmünzer S (1989a) Sesquiterpene lactone glycosides from Crepis tectorum. Pol J Chem 63:527–530Google Scholar
  50. Kisiel W, Kohlmünzer S (1989b) A sesquiterpene lactone glycoside from Crepis tectorum. Phytochemistry 28:2403–2404CrossRefGoogle Scholar
  51. Kisiel W, Barszcz B, Szneler E (1997) Sesquiterpene lactones from Lactuca tatarica. Phytochemistry 45:365–368CrossRefGoogle Scholar
  52. Kroschewsky JR, Mabry TJ, Markham KR, Alston RE (1969) Flavonoids from the genus Tragopogon (Compositae). Phytochemistry 8:1495–1498CrossRefGoogle Scholar
  53. Krzaczek T, Smolarz H (1988) Phytochemical studies of the herb Tragopogon orientalis L. (Asteraceae). I. Components of the petroleum ether extract. Acta Soc Bot Pol 57:85–92CrossRefGoogle Scholar
  54. Kumari R, Ali M, Aeri V (2012) Two new triterpenoids from Cichorium intybus L. roots. J Asian Nat Prod Res 14:7–13CrossRefPubMedGoogle Scholar
  55. Máñez S, Recio MC, Giner RM, Sanz MJ, Terencio MC, Peris JB, Stübing G, Rios J-L (1994) A chemotaxonomic review of the subtribe Crepidinae based on its phenolic constituents. Biochem Syst Ecol 22:297–305CrossRefGoogle Scholar
  56. Mertens F, Çiçek SS, Zidorn C (2018) Integrifolin from Pilosella officinarum (Asteraceae, Cichorieae): first record of a sesquiterpene lactone in the genus Pilosella. Biochem Syst Ecol 80:43–45CrossRefGoogle Scholar
  57. Michalska K, Kisiel W (2005) Sesquiterpenoids and phenolics from Taraxacum rubicundum. Pol J Chem 79:1547–1549Google Scholar
  58. Michalska K, Kisiel W (2008) Sesquiterpene lactones from Taraxacum erythrospermum. Biochem Syst Ecol 36:444–446CrossRefGoogle Scholar
  59. Michalska K, Kisiel W (2009) Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica. Acta Soc Bot Pol 78:25–27Google Scholar
  60. Michalska K, Stojakowska A, Malarz J, Doležalová I, Lebeda A, Kisiel W (2009) Systematic implications of sesquiterpene lactones in Lactuca species. Biochem Syst Ecol 37:174–179CrossRefGoogle Scholar
  61. Michalska K, Marciniuk J, Kisiel W (2010) Sesquiterpenoids and phenolics from roots of Taraxacum udum. Fitoterapia 81:434–436CrossRefPubMedGoogle Scholar
  62. Michalska K, Pieron K, Stojakowska A (2018) Sesquiterpene lactones and phenolics from roots of Leontodon hispidus L. subsp. hispidus. Nat Prod Comm 13:393–394Google Scholar
  63. Mierwald U, Romahn K (2006) Die Farn- und Blütenpflanzen Schleswig-Holsteins. Rote Liste, vol 1. Landesamt für Natur und Umwelt des Landes Schleswig-Holstein, FlintbekGoogle Scholar
  64. Mikolajczak KL, Smith CR, Bagby MO, Wolff IA (1964) New type of naturally occurring polyunsaturated fatty acid. J Org Chem 29:318–322CrossRefGoogle Scholar
  65. Miller SJ, Clardy J (2009) Beyond grind and find. Nature Chem 1:261–263CrossRefGoogle Scholar
  66. Miyase T, Kohsaka H, Ueno A (1992) Tragopogonosides A-I, oleanane saponins from Tragopogon pratensis. Phytochemistry 31:2087–2091CrossRefGoogle Scholar
  67. Naumoska K, Vovk I (2015) Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry. J Chrom A 1381:229–238CrossRefGoogle Scholar
  68. Ohmura K, Miyase T, Ueno A (1989) Sesquiterpene glucosides and a phenylbutanoid glycoside from Hypochoeris radicata. Phytochemistry 28:1919–1924CrossRefGoogle Scholar
  69. Ou ZQ, Schmierer DM, Rades T, Larsen L, McDowell A (2013) Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. J Pharm Pharmacol 65:271–279CrossRefPubMedGoogle Scholar
  70. Pietra F (2002) Biodiversity and natural product diversity. Tetrahedron Org Chem Ser 21:1–351Google Scholar
  71. Pyrek JS (1985) Sesquiterpene lactones from Cichorium intybus and Leontodon autumnalis. Phytochemistry 24:186–188CrossRefGoogle Scholar
  72. Radulović N, Blagojević P, Palić R (2009) Fatty acid derivied compounds: the dominant volatile class of the essential oil poor Sonchus arvensis subsp. uliginosus (Bieb.) Nyman. Nat Prod Comm 4:405–410Google Scholar
  73. Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613CrossRefPubMedGoogle Scholar
  74. Rees S, Harborne J (1984) Flavonoids and other phenolics of Cichorium and related members of the Lactuceae (Compositae). Bot J Linn Soc 89:313–319CrossRefGoogle Scholar
  75. Romahn K (2010) Funde seltener, gefährdeter, neuer und wenig beachteter Gefäßpflanzen in Schleswig-Holstein VI. Kiel Not Pflanzenkd 37:83–103Google Scholar
  76. Romahn K (2012) Funde seltener, gefährdeter, neuer und wenig beachteter Gefäßpflanzen in Schleswig-Holstein VII. Kiel Not Pflanzenkd 38:48–67Google Scholar
  77. Saeki D, Yamada T, In Y, Kajimoto T, Tanaka R, Iizuka Y, Nakane T, Takano A, Masuda K (2013) Officinatrione: an unsusual (17S)-17,18-seco-lupane skeleton, and four novel lupan-type triterpenoids from the roots of Taraxacum officinale. Tetrahedron 69:1583–1589CrossRefGoogle Scholar
  78. Sareedenchai V, Ganzera M, Ellmerer E-P, Lohwasser U, Zidorn C (2009) Phenolic compounds from Tragopogon porrifolius L. Biochem Syst Ecol 37:234–236CrossRefGoogle Scholar
  79. Schütz K, Kammerer DR, Carle R, Schieber A (2005) Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rap Comm Mass Spec 19:179–186CrossRefGoogle Scholar
  80. Schütz K, Carle R, Schieber A (2006) Taraxacum − a review on its phytochemical and pharmacological profile. J Ethnopharm 107:313–323CrossRefGoogle Scholar
  81. Sharifi-Rad M, Roberts TH, Matthews KR, Bezerra CF, Morais-Braga MFB, Coutinho HD, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, del Mar Contreras M, Varoni EM, Verma DR, Iriti M, Sharifi-Rad J (2018) Ethnobotany of the genus Taraxacum -Phytochemicals and antimicrobial activity. Phytother Res 32:2131–2145CrossRefPubMedGoogle Scholar
  82. Shelyuto VL, Glyzin VI, Kruglova EP, Smirnova LP (1977) Flavonoids from Hieracium pilosella. Chem Nat Comp 13:727–728CrossRefGoogle Scholar
  83. Shimizu S, Miyase T, Ueno A, Usmanghani K (1989) Sesquiterpene lactone glycosides and ionone derivative glycosides from Sonchus asper. Phytochemistry 28:3399–3402CrossRefGoogle Scholar
  84. Shukla S, Kumar A, Bahadur L, Pal M (2015) Fatty acid composition of Sonchus arvensis roots. Ind J Nat Prod Res 6:62–64Google Scholar
  85. Shulha O, Zidorn C (2019) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update (2008–2017). Phytochemistry.  https://doi.org/10.1016/j.phytochem.2019.02.001 CrossRefPubMedGoogle Scholar
  86. Smolarz H, Krzaczek T (1988) Phytochemical studies of the herb Tragopogon orientalis L. (Asteraceae). II. Components of the methanol extract. Acta Soc Bot Pol 57:93–105CrossRefGoogle Scholar
  87. Stanciu G, Lupsor S, Arcuş M (2007) GC-MS characterization of the volatile oil from Lapsana communis L. Ovidius Univ Ann Chem 18:72–75Google Scholar
  88. Statistisches Bundesamt (2018) Bundesländer mit Hauptstädten nach Fläche, Bevölkerung und Bevölkerungsdichte. Gebietstand 31/12/2017. Published 10/2018. www.destatis.de. Accessed 05 Mar 2019
  89. Street RA, Sidana J, Prinsloo G (2013) Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology. Evid Based Compl Alt Med 2013:579319Google Scholar
  90. Terencio MC, Giner RM, Sanz MJ, Máñez S, Ríos JL (1993) On the occurrence of caffeoyltartronic acid and other phenolics in Chondrilla juncea. Zeitschr Naturforsch 48c:417–419CrossRefGoogle Scholar
  91. The Plant List (2019) The Plant List: a working list of all plant species. http://www.theplantlist.org. Accessed 20 Jan 2019
  92. Wang X-X, Lin C-J, Jia Z-L (2006) Triterpenoids and sesquiterpenes from Mulgedium tataricum. Planta Med 72:764–767CrossRefPubMedGoogle Scholar
  93. Wang X-X, Gao X, Jia Z-J (2010) Sesquiterpenoids from Lactuca tatarica. Fitoterapia 81:42–44CrossRefPubMedGoogle Scholar
  94. Warashina T, Miyase T, Ueno A (1991) Novel acylated saponins from Tragopogon porrifolius L. Isolation and the structures of tragopogonsaponins A-R. Chem Pharm Bull 39:388–396CrossRefGoogle Scholar
  95. Wolfender J-L, Nuzillard J-M, van der Hooft JJJ, Renault J-H, Bertrand S (2019) Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography—high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem 91:704–742CrossRefPubMedGoogle Scholar
  96. Xu Y-J, Sun S-B, Sun L-M, Qiu D-F, Liu X-J, Jiang Z-B, Yuan C-S (2008) Quinic acid esters and sesquiterpenes from Sonchus arvensis. Food Chem 111:92–97CrossRefGoogle Scholar
  97. Yadava RN, Jharbade J (2007) A new bioactive triterpenoid saponin from the seeds of Lactuca scariola Linn. Nat Prod Res 21:500–506CrossRefPubMedGoogle Scholar
  98. Yadava RN, Jharbade J (2008) New antibacterial triterpenoid saponin from Lactuca scariola. Fitoterapia 79:245–249CrossRefPubMedGoogle Scholar
  99. Zhang Z-X, Xie W-D, Li P-L, Shi Y-P, Jia Z-J (2006) Sesquiterpenoids and phenylpropane derivatives from Sonchus uliginosus. Helv Chim Acta 89:2927–2934CrossRefGoogle Scholar
  100. Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69:2270–2296CrossRefPubMedGoogle Scholar
  101. Zidorn C (2012) Leontodon and Scorzoneroides (Asteraceae, Cichorieae) in Italy. Plant Biosyst 146-S1:41–51CrossRefGoogle Scholar
  102. Zidorn C (2015) Isoetin and its derivatives: analytics, chemosystematics, and bioactivities. Biochem Syst Ecol 61:402–412CrossRefGoogle Scholar
  103. Zidorn C (2019) Plant chemophenetics: a new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry.  https://doi.org/10.1016/j.phytochem.2019.02.013 CrossRefPubMedGoogle Scholar
  104. Zidorn C, Stuppner H (2001a) Chemosystematics of taxa from the Leontodon section Oporinia. Biochem Syst Ecol 29:827–837CrossRefPubMedGoogle Scholar
  105. Zidorn C, Stuppner H (2001b) Evaluation of chemosystematic characters in the genus Leontodon. Taxon 50:115–133CrossRefGoogle Scholar
  106. Zidorn C, Ellmerer-Müller EP, Stuppner H (1999) Eudesmanolides and inositol derivatives from Taraxacum linearisquameum. Phytochemistry 51:991–994; Errata: Phytochemistry 53:317; 54:349 (both 2000)Google Scholar
  107. Zidorn C, Ellmerer-Müller EP, Stuppner H (1999b) Eudesmanolides and inositol derivatives from Taraxacum linearisquameum. Phytochemistry 51:991–994CrossRefGoogle Scholar
  108. Zidorn C, Ellmerer-Müller EP, Ongania K-H, Sturm S, Stuppner H (2000a) New taxonomically significant sesquiterpenoids from Leontodon autumnalis. J Nat Prod 63:812–816CrossRefPubMedGoogle Scholar
  109. Zidorn C, Ellmerer-Müller EP, Stuppner H (2000b) Tyrolobibenzyls - novel secondary metabolites from Scorzonera humilis. Helv Chim Acta 83:2920–2925CrossRefGoogle Scholar
  110. Zidorn C, Ellmerer-Müller EP, Stuppner H (2001) A germacranolide and three hydroxybenzylalcohol derivatives from Hieracium murorum and Crepis bocconi. Phytochem Anal 12:281–285CrossRefPubMedGoogle Scholar
  111. Zidorn C, Gottschlich G, Stuppner H (2002a) Chemosystematic investigations on phenolics from flowerheads of Central European taxa of Hieracium (Asteraceae). Plant Syst Evol 231:39–58CrossRefGoogle Scholar
  112. Zidorn C, Spitaler R, Ellmerer-Müller EP, Perry NB, Gerhäuser C, Stuppner H (2002b) Structure of tyrolobibenzyl D and biological activity of tyrolobibenzyls from Scorzonera humilis. Z Naturforsch 57c:614–619CrossRefGoogle Scholar
  113. Zidorn C, Ellmerer EP, Sturm S, Stuppner H (2003) Tyrolobibenzyls E and F from Scorzonera humilis and distribution of caffeic acids, lignans and tyrolobibenzyls in European taxa of the subtribe Scorzonerinae (Lactuceae, Asteraceae). Phytochemistry 63:61–67CrossRefPubMedGoogle Scholar
  114. Zidorn C, Lohwasser U, Pschorr S, Salvenmoser D, Ongania K-H, Ellmerer EP, Börner A, Stuppner H (2005a) Bibenzyls and dihydroisocoumarins from white salsify (Tragopogon porrifolius subsp. porrifolius). Phytochemistry 66:1691–1697CrossRefPubMedGoogle Scholar
  115. Zidorn C, Schubert B, Stuppner H (2005b) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–872CrossRefGoogle Scholar
  116. Zidorn C, Udovičić V, Spitaler R, Ellmerer EP, Stuppner H (2005c) Secondary metabolites from Arnoseris minima. Biochem Syst Ecol 33:827–829CrossRefGoogle Scholar
  117. Zidorn C, Grass S, Ellmerer EP, Ongania K-H, Stuppner H (2006a) Stilbenoids from Tragopogon orientalis. Phytochemistry 67:2182–2188CrossRefPubMedGoogle Scholar
  118. Zidorn C, Spitaler R, Ellmerer EP, Stuppner H (2006b) On the occurrence of the guaianolide glucoside ixerin F in Chondrilla juncea and its chemosystematic significance. Biochem Syst Ecol 34:900–902CrossRefGoogle Scholar
  119. Zidorn C, Schubert B, Stuppner H (2008) Phenolics as chemosystematic markers in and for the genus Crepis (Asteraceae, Cichorieae). Sci Pharm 76:743–750CrossRefGoogle Scholar
  120. Zidorn C, Petersen BO, Sareedenchai V, Ellmerer EP, Duus JØ (2010) Tragoponol, a dimeric dihydroisocoumarin from Tragopogon porrifolius L. Tetrahedron Lett 51:1390–1393CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Kiel Pharmacognosy Group (KPG), Abteilung Pharmazeutische Biologie, Pharmazeutisches InstitutUniversität zu KielKielGermany

Personalised recommendations