Skip to main content

Advertisement

Log in

The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Flavonoids are a large group of plant secondary metabolites that have a high popularity as nutraceuticals. Further, they contribute to food quality, acting as preservatives, pigments and strong antioxidants. Flavonoids also play an important role in plant stress tolerance, with consequent contribution to crop productivity. The enhancement of flavonoid content is an alluring goal that meets the food requirements of an increasing and more demanding world population. After illustrating the relevance of flavonoids for human nutrition, food technology and plant protection, this review covers breeding and molecular strategies used to exploit flavonoid biodiversity present among plant species. Highlighted here are also recent advances in genome sequencing and -omics tools that facilitate the identification of genetic regions influencing flavonoid production in relevant agricultural species. Finally, the review outlines established and new biotechnological techniques which can help to functionalize and use flavonoid genes to improve both the quality and the quantity of these outstanding compounds. The final message of this review is that flavonoids can be an interesting target for molecular plant breeding that can greatly impact both primary agricultural products and food technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix-loop-helix

bZIP:

Basic leucine zipper

4CL:

4-Coumarate:CoaLigase

CBF1:

C-repeat/DRE binding factor 1

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats-associated protein-9 nuclease

DFR:

Dihydroflavonol 4-reductase

F3′H:

Flavonoid 3′ hydroxylase

F3′5′H:

Flavonoid 3′,5′-hydroxylase

GWAS:

Genome wide association studies

LNK:

Night light-inducible and clock-regulated genes

MAPK:

Mitogen-activated protein kinase

NAC:

Non apical meristem

NADPH:

Nicotinamide adenine dinucleotide phosphate

PAP1:

Production of anthocyanin pigment 1

QTL:

Quantitative trait loci

RD29a:

Responsive to dehydration 29a

RONS:

Reactive oxygen and nitrogen species

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphisms

TALENs:

Transcription activator-like effector nucleases

TF:

Transcription factor

VIGS:

Virus induced gene silencing

ZFNs:

Zinc finger nucleases

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S et al (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ et al (2015) Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct Integr Genomic 15:383–394

    Article  CAS  Google Scholar 

  • Ali K, Maltese F, Choi YH et al (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378

    Article  CAS  PubMed  Google Scholar 

  • Alseekh S, Tohge T, Wendenberg R et al (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:485–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amato A, Cavallini E, Zenoni S et al (2017) A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Front Plant Sci 7:1979

    Article  PubMed Central  PubMed  Google Scholar 

  • Andersen OM, Fossen T (1995) Anthocyanins with an unusual acylation pattern from stem of Allium victorialis. Phytochemistry 40:1809–1812

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Aversano R, Contaldi F, Ercolano MR et al (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aversano R, Contaldi F, Adelfi MG et al (2017) Comparative metabolite and genome analysis of tuber-bearing potato species. Phytochemistry 137:42–51

    Article  CAS  PubMed  Google Scholar 

  • Ayabe S, Akashi T (2006) Cytochrome P450s in flavonoid metabolism. Phytochem Rev 5:271–282

    Article  CAS  Google Scholar 

  • Ballester AR, Tikunov Y, Molthoff J et al (2016) Identification of loci affecting accumulation of secondary metabolites in tomato fruit of a Solanum lycopersicum × Solanum chmielewskii introgression line population. Front Plant Sci 7:1428

    Article  PubMed Central  PubMed  Google Scholar 

  • Ballizany WL, Griffiths AG, Franzmayr BK et al (2016) Marker-trait associations for flavonoids and biomass in white clover (Trifolium Repens L.). In: Roldán-Ruiz I, Baert J, Reheul D (eds) Breeding in a world of scarcity. Springer, Cham, p 225

    Google Scholar 

  • Bhattacharyya P, Ghosh S, Sen Mandi S et al (2017) Genetic variability and association of AFLP markers with some important biochemical traits in Dendrobium thyrsiflorum, a threatened medicinal orchid. S Afr J Bot 109:214–222

    Article  CAS  Google Scholar 

  • Bienert GP, Moller ALB, Kristiansen KA et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bogs J, Jaffe FW, Takos AM et al (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bontempo P, De Masi L, Carafa V et al (2015) Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte”. J Funct Foods 19:584–593

    Article  CAS  Google Scholar 

  • Brown CR, Culley D, Bonierbale M et al (2007) Anthocyanin, carotenoid content, and antioxidant values in native South American potato cultivars. HortScience 42:1733–1736

    Google Scholar 

  • Buchweitz M, Brauch J, Carle R et al (2013) Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems. Food Chem 138:2026–2035

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Cardi T, Neal Stewart C Jr (2016) Progress of targeted genome modification approaches in higher plants. Plant Cell Rep 35:1401–1416

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Krieger C, Rassam M et al (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldivar SO et al (2016) Production of maize tortillas and cookies from nixtamalized flour enriched with anthocyanins, flavonoids and saponins extracted from black bean (Phaseolus vulgaris) seed coats. Food Chem 192:90–97

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Gao YQ, Xie WB et al (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Doring TF (2007) Are autumn foliage colors red signals to aphids? PLoS Biol 5:1640–1644

    CAS  Google Scholar 

  • Cortez R, Luna-Vital DA, Margulis D et al (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci F 16:180–198

    Article  CAS  Google Scholar 

  • D’Amelia V, Aversano R, Batelli G et al (2014) High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant J 80:527–540

    Article  CAS  PubMed  Google Scholar 

  • D’Amelia V, Aversano R, Ruggiero A et al (2017) Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant Cell Environ. https://doi.org/10.1111/pce.12966

    Article  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Davies KM (2004) An introduction to plant pigments in biology and in commerce. In: Davies KM (ed) Plant pigments and their manipulation, vol 14. CRC Press, Oxford, pp 1–22

    Google Scholar 

  • De Luca V, Salim V, Atsumi SM et al (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661

    Article  CAS  PubMed  Google Scholar 

  • Demirci Y, Zhang B, Unver T (2017) CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. J Cell Physiol 21:21

    Google Scholar 

  • Di Ferdinando M, Brunetti C, Fini A et al (2012) Flavonoids as antioxidants in plants under abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, p 159

    Chapter  Google Scholar 

  • Di Matteo A, Ruggieri V, Sacco A et al (2013) Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci 205:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dong XK, Chen W, Wang WS et al (2014) Comprehensive profiling and natural variation of flavonoids in rice. J Integr Plant Biol 56:876–886

    Article  CAS  PubMed  Google Scholar 

  • Du YG, Chu H, Wang MF et al (2010) Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in Sorghum. J Exp Bot 61:983–994

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Espinoza-Moreno RJ, Reyes-Moreno C, Milan-Carrillo J et al (2016) Healthy ready-to-eat expanded snack with high nutritional and antioxidant value produced from whole amarantin transgenic maize and black common bean. Plant Food Hum Nutr 71:218–224

    Article  CAS  Google Scholar 

  • Esposito D, Chen A, Grace MH et al (2014) Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro. J Agric Food Chem 62:7022–7028

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Cao CM, Vikram M et al (2011) A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana. PLoS ONE 6:e17603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fini A, Brunetti C, Di Ferdinando M et al (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Article  CAS  Google Scholar 

  • Goiris K, Muylaert K, Voorspoels S et al (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50:483–492

    Article  CAS  PubMed  Google Scholar 

  • Gonzali S, Mazzucato A, Perata P (2009) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14:237–241

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E, Drummond BJ, Bowen B et al (1994) The MYB-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543–553

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Qiu LJ (2013) Allele-specific marker development and selection efficiencies for both flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase genes in soybean subgenus soja. Theor Appl Genet 126:1445–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurnani N, Gupta M, Mehta D et al (2016) Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). J Taibah Univ Sci 10:462–470

    Article  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harker CL, Ellis THN, Coen ES (1990) Identification and genetic-regulation of the chalcone synthase multigene family in pea. Plant Cell 2:185–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa M, Mitsuhara I, Seo S et al (2014) Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules 19:11404–11418

    Article  CAS  PubMed  Google Scholar 

  • Hatier JHB, Gould KS (2008) Foliar anthocyanins as modulators of stress signals. J Theor Biol 253:625–627

    Article  CAS  PubMed  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Sotero MY, Cruz-Hernández CD, Trujillo-Carretero C et al (2017) Antioxidant and antiproliferative activity of blue corn and tortilla from native maize. Chem Cent J 11:110

    Article  PubMed Central  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J et al (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Hintz T, Matthews KK, Di R (2015) The use of plant antimicrobial compounds for food preservation. Biomed Res Int 2015:246264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou MY, Mu GJ, Zhang YJ et al (2017) Evaluation of total flavonoid content and analysis of related EST-SSR in chinese peanut germ plasm. Crop Breed Appl Biot 17:221–227

    Article  Google Scholar 

  • Hwang SL, Shih PH, Yen GC (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885

    Article  CAS  PubMed  Google Scholar 

  • Ioannou I, Hafsa I, Hamdi S et al (2012) Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J Food Eng 111:208–217

    Article  CAS  Google Scholar 

  • Ismail H, Maksimovic JD, Maksimovic V et al (2016) Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Funct Plant Biol 43:75–86

    CAS  Google Scholar 

  • Itkin M, Aharoni A (2009) Bioengineering. In: Osbourn A, Lanzotti V (eds) Plant-derived natural products, p 435

  • Izbiańska K, Arasimowicz-Jelonek M, Deckert J (2014) Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotox Environ Safe 110:61–67

    Article  CAS  Google Scholar 

  • Jin M, Zang X, Zhao M et al (2017) Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis. BMC Plant Biol 17:17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones CM, Mes P, Myers JR (2003) Characterization and inheritance of the anthocyanin fruit (Aft) tomato. J Hered 94:449–456

    Article  CAS  PubMed  Google Scholar 

  • Jung CS, Griffiths HM, De Jong DM et al (2009) The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet 120:45–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang J, Li Z, Wu T et al (2010) Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem 122:610–617

    Article  CAS  Google Scholar 

  • Karaaslan M, Ozden M, Vardin H et al (2011) Phenolic fortification of yogurt using grape and callus extracts. Lwt-Food Sci Technol 44:1065–1072

    Article  CAS  Google Scholar 

  • Karageorgou P, Manetas Y (2006) The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol 26:613–621

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yoo KS, Pike LM (2005) Development of a co-dominant, PCR-based marker for allelic selection of the pink trait in onions (Allium cepa), based on the insertion mutation in the promoter of the anthocyanidin synthase gene. Theor Appl Genet 110:1167

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2008) A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS ONE 3:e1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2009) Use of secondary metabolite variation in crop improvement. In: Osbourn A, Lanzotti V (eds) Plant-derived natural products. Springer, New York, p 83

    Chapter  Google Scholar 

  • Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25

    CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Google Scholar 

  • Lee J, Chung JH, Kim HM et al (2016) Designed nucleases for targeted genome editing. Plant Biotechnol J 14:448–462

    Article  CAS  PubMed  Google Scholar 

  • Li PM, Cheng LL (2009) The elevated anthocyanin level in the shaded peel of ‘Anjou’ pear enhances its tolerance to high temperature under high light. Plant Sci 177:418–426

    Article  CAS  Google Scholar 

  • Lim S, Xu JT, Kim J et al (2013) Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res 57:1908–1917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin T, Zhu GT, Zhang JH et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Osbourn A, Ma PD (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708

    Article  CAS  PubMed  Google Scholar 

  • Lopez-de-Dicastillo C, Catala R, Gavara R et al (2011) Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. J Agric Food Chem 59:7832–7840

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gresa MP, Torres C, Campos L et al (2011) Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot 74:216–228

    Article  CAS  Google Scholar 

  • Luo J, Butelli E, Hill L et al (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    Article  CAS  PubMed  Google Scholar 

  • Ma DY, Sun DX, Wang CY et al (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    Article  CAS  PubMed  Google Scholar 

  • Mahboubi A, Asgarpanah J, Sadaghiyani PN et al (2015) Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. Var. Pleniflora flowers (golnar) against bacterial strains causing foodborne diseases. BMC Compl Altern Med 15:366

    Article  CAS  Google Scholar 

  • Malacarne G, Coller E, Czemmel S et al (2016) The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J Exp Bot 67:3509–3522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandalari G, Bennett RN, Bisignano G et al (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103:2056–2064

    Article  CAS  PubMed  Google Scholar 

  • Mandalari G, Bisignano C, D’Arrigo M et al (2010) Antimicrobial potential of polyphenols extracted from almond skins. Lett Appl Microbiol 51:83–89

    CAS  PubMed  Google Scholar 

  • Martin C, Li J (2017) Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytol 216:699–719

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Butelli E, Petroni K et al (2011) How can research on plants contribute to promoting human health? Plant Cell 23:1685–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y, Tonelli C et al (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46

    Article  CAS  PubMed  Google Scholar 

  • Mateus N, de Freitas V (2008) Anthocyanin as food colorants. In: Winefield C, Davies K, Gould K (eds) Anthocyanins. Springer, New York, p 283

    Google Scholar 

  • Matsuda F, Nakabayashi R, Yang ZG et al (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81:13–23

    Article  CAS  PubMed  Google Scholar 

  • Mes PJ, Boches P, Myers JR et al (2008) Characterization of tomatoes expressing anthocyanin in the fruit. J Am Soc Hortic Sci 133:262–269

    Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265

    Article  CAS  PubMed  Google Scholar 

  • Mladenka P, Zatloukalova L, Filipsky T et al (2010) Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radical Biol Med 49:963–975

    Article  CAS  Google Scholar 

  • Moore B, Andrew RL, Kulheim C et al (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Morand C, Dubray C, Milenkovic D et al (2011) Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. Am J Clin Nutr 93:73–80

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Wozniak A, Formela M et al (2016) Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma 253:1063–1079

    Article  CAS  PubMed  Google Scholar 

  • Nagamatsu A, Masuta C, Senda M et al (2007) Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J 5:778–790

    Article  CAS  PubMed  Google Scholar 

  • Nems A, Peksa A, Kucharska AZ et al (2015) Anthocyanin and antioxidant activity of snacks with coloured potato. Food Chem 172:175–182

    Article  CAS  PubMed  Google Scholar 

  • Pazos M, Gallardo JM, Torres JL et al (2005) Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem 3:547–557

    Article  CAS  Google Scholar 

  • Pearse IS, Heath KD, Cheeseman JM (2005) Biochemical and ecological characterization of two peroxidase isoenzymes from the mangrove, Rhizophora mangle. Plant Cell Environ 28:612–622

    Article  CAS  Google Scholar 

  • Peng XF, Ma JY, Cheng KW et al (2010) The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem 119:49–53

    Article  CAS  Google Scholar 

  • Petersen B, Snapp S (2015) What is sustainable intensification? Views from experts. Land Use Policy 46:1–10

    Article  Google Scholar 

  • Petroni K, Pilu R, Tonelli C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240:901–911

    Article  CAS  PubMed  Google Scholar 

  • Plaza M, Pozzo T, Liu JY et al (2014) Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem 62:3321–3333

    Article  CAS  PubMed  Google Scholar 

  • Racchi ML (2013) Antioxidant defenses in plants with attention to prunus and Citrus spp. Antioxidants 2:340–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raffa D, Maggio B, Raimondi MV et al (2017) Recent discoveries of anticancer flavonoids. Euro J Med Chem 142:213–228

    Article  CAS  Google Scholar 

  • Rey AI, Hopia A, Kivikari R et al (2005) Use of natural food/plant extracts: cloudberry (Rubus Chamaemorus), beetroot (Beta Vulgaris “Vulgaris”) or willow herb (Epilobium angustifolium) to reduce lipid oxidation of cooked pork patties. LWT- Food Sci Technol 38:363–370

    Article  CAS  Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL et al (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem 62:10916–10927

    Article  CAS  PubMed  Google Scholar 

  • Rigano MM, Raiola A, Docimo T et al (2016) Metabolic and molecular changes of the phenylpropanoid pathway in tomato (Solanum lycopersicum) lines carrying different Solanum pennellii wild chromosomal regions. Front Plant Sci 7:1484

    Article  PubMed Central  PubMed  Google Scholar 

  • Rinaldi A, Villano C, Lanzillo C et al (2017) Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape. Food Chem 233:52–59

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D et al (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    Article  CAS  PubMed  Google Scholar 

  • Schaefer HM, Rolshausen G (2006) Plants on red alert: Do insects pay attention? BioEssays 28:65–71

    Article  PubMed  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  • Shao YF, Jin L, Zhang G et al (2011) Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theor Appl Genet 122:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Synowiec A, Gniewosz M, Krasniewska K et al (2014) Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innov Food Sci Emerg 23:171–181

    Article  CAS  Google Scholar 

  • Tai HH, Goyer C, Murphy AM (2013) Potato MYB and bHLH transcription factors associated with anthocyanin intensity and common scab resistance. Botany 91:722–730

    Article  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P et al (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • The Potato Genome Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–194

    Article  CAS  Google Scholar 

  • Tian J, Zhang J, Han ZY et al (2017) McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus crabapple. Sci Rep 7:43715

    Article  PubMed Central  PubMed  Google Scholar 

  • Toda K, Takahashi R, Iwashina T et al (2011) Difference in chilling-induced flavonoid profiles, antioxidant activity and chilling tolerance between soybean near-isogenic lines for the pubescence color gene. J Plant Res 124:173–182

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Perez de Souza L, Fernie AR (2017a) On the natural diversity of phenylacylated-flavonoid and their in planta function under conditions of stress. Phytochem Rev 1–12

  • Tohge T, Perez de Souza L, Fernie AR (2017b) Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot 68:4013–4028

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • Venisse JS, Gullner G, Brisset MN (2001) Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol 125:2164–2172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viji P, Binsi PK, Visnuvinayagam S et al (2015) Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts as natural preservatives for shelf life extension of chill stored indian mackerel. J Food Sci Technol Mys 52:6278–6289

    Article  CAS  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhang X (2012) Inhibitory effects of broccolini leaf flavonoids on human cancer cells. Scanning 34:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wen WW, Li D, Li X et al (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun 5:3438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wen ZX, Boyse JF, Song QJ et al (2015) Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genom 16:671

    Article  CAS  Google Scholar 

  • Willits MG, Kramer CM, Prata RTN et al (2005) Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. J Agric Food Chem 53:1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H, Dushenkov S, Ho CT et al (2009) Novel acetylated flavonoid glycosides from the leaves of Allium ursinum. Food Chem 115:592–595

    Article  CAS  Google Scholar 

  • Yan JH, Wang BA, Jiang YN et al (2014) GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant Cell Physiol 55:74–86

    Article  CAS  PubMed  Google Scholar 

  • Yao LH, Jiang YM, Shi J et al (2004) Flavonoids in food and their health benefits. Plant Food Hum Nutr 59:113–122

    Article  CAS  Google Scholar 

  • Yashin A, Yashin Y, Xia X et al (2017) Antioxidant activity of spices and their impact on human health: a review. Antioxidants 6:70

    Article  PubMed Central  CAS  Google Scholar 

  • Zhai R, Wang ZM, Zhang SW et al (2016) Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). J Exp Bot 67:1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Jung CS, De Jong WS (2009) Genetic analysis of pigmented tuber flesh in potato. Theor Appl Genet 119:143–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Butelli E, De Stefano R et al (2013) Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23:1094–1100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Butelli E, Alseekh S et al (2015a) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, De Stefano R, Robine M et al (2015b) Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physiol 169:1568–1583

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Wang-Li K, Wang H et al (2015a) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82:105–121

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Jacobs TB, Xue LJ et al (2015b) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Zhang K, Sun Z et al (2017) LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiol 174:1348–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Carputo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amelia, V., Aversano, R., Chiaiese, P. et al. The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochem Rev 17, 611–625 (2018). https://doi.org/10.1007/s11101-018-9568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9568-y

Keywords

Navigation