Phytochemistry Reviews

, Volume 17, Issue 6, pp 1239–1251 | Cite as

Erysimum cheiranthoides, an ecological research system with potential as a genetic and genomic model for studying cardiac glycoside biosynthesis

  • Tobias Züst
  • Mahdieh Mirzaei
  • Georg Jander


At least twelve plant families contain species that synthesize cardiac glycosides as defense against herbivory. These inhibitors of animal Na+, K+-ATPases also have medical uses in treating congestive heart failure and other diseases. However, despite extensive ecological research and centuries of use in both traditional and modern medicine, the complete cardiac glycoside biosynthesis pathway has yet to be elucidated in any plant species. To a large extent, this research deficit results from the fact that cardiac glycosides are produced exclusively by non-model plant species such as Digitalis that have not been amenable to the development of mutagenesis, cloning, and genetic mapping approaches. Recent advances in genome sequencing, transcript profiling, plant transformation, transient expression assays, and plant metabolite analysis have provided new opportunities for the investigation and elucidation of cardiac glycoside biosynthesis pathways. The genetic tools that have been developed for Brassicaceae, in particular Arabidopsis thaliana, may be directly applicable to Erysimum, a Brassicaceae genus that characteristically produces cardiac glycosides as defensive metabolites. We propose that Erysimum cheiranthoides (wormseed wallflower), a rapid-cycling, self-pollinating species with a relatively small, diploid genome, would be a suitable model system to advance research on the biosynthesis of cardiac glycosides in plants.


Erysimum cheiranthoides Wallflower Cardiac glycoside Cardenolide Model system 



We thank Georg Petschenka for the E. cheiranthoides photograph in Fig. 1a, and Kaitlin Pidgeon and Suzy Strickler for experimental assistance. Funding for this work was provided by Swiss National Science Foundation Grant PZ00P3-161472 to T.Z., a fellowship from the Ministry of Science, Research, and Technology of Iran to M.M., and a Triad Foundation Grant and US National Science Foundation award IOS-1645256 to G.J.


  1. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45PubMedGoogle Scholar
  2. Al-Shehbaz IA (1988) The genera of Anchonieae (Hesperideae) (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 69:193–212Google Scholar
  3. Al-Shehbaz IA (2010) Erysimum Linnaeus. In: Committee (ed) Flora of North America North of Mexico. Oxford University Press, New York, pp 534–545Google Scholar
  4. Araya JJ, Kindscher K, Timmermann BN (2012) Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca. J Nat Prod 75:400–407PubMedGoogle Scholar
  5. Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG (2012) A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. New Phytol 196:1240–1250PubMedGoogle Scholar
  6. Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N, Vogel H, Reinecke A, Svatos A, Mewis I, Schmid D, Ramasamy S, Ulrichs C, Hansson BS, Gershenzon J, Heckel DG (2014) Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate–myrosinase system. Proc Natl Acad Sci USA 111:7349–7354PubMedGoogle Scholar
  7. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425PubMedGoogle Scholar
  8. Bock H (1577) Kreutterbuch. Johan Rihel, StraßburgGoogle Scholar
  9. Brock A, Herzfeld T, Paschke R, Koch M, Drager B (2006) Brassicaceae contain nortropane alkaloids. Phytochemistry 67:2050–2057PubMedGoogle Scholar
  10. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27PubMedPubMedCentralGoogle Scholar
  11. Chew FS (1975) Coevolution of pierid butterflies and their cruciferous food plants. 1. Relative quality of available resources. Oecologia 20:117–127PubMedGoogle Scholar
  12. Chew FS (1977) Coevolution of pierid butterflies and their cruciferous foodplants. 2. Distribution of eggs on potential foodplants. Evolution 31:568–579PubMedGoogle Scholar
  13. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedGoogle Scholar
  14. Cordus V (1542) Dispensatorium. NürnbergGoogle Scholar
  15. Dimock MB, Renwick JA, Radke CD, Sachdev-Gupta K (1991) Chemical constituents of an unacceptable crucifer, Erysimum cheiranthoides, deter feeding by Pieris rapae. J Chem Ecol 17:525–533PubMedGoogle Scholar
  16. Dioscorides P (~ 70) Περὶ ὕλης ἰατρικῆς - De Materia Medica. AnazarbusGoogle Scholar
  17. Dzimiri N, Fricke U, Klaus W (1987) Influence of derivation on the lipophilicity and inhibitory actions of cardiac glycosides on myocardial Na +-K +-ATPase. Br J Pharmacol 91:31–38PubMedPubMedCentralGoogle Scholar
  18. Ehrlich PR, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608Google Scholar
  19. Feeny P (1977) Ecology of the Cruciferae. Ann Mo Bot Gard 64:221–234Google Scholar
  20. Finsterbusch A, Lindemann P, Grimm R, Eckerskorn C, Luckner M (1999) Delta(5)-3beta-hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. A multifunctional enzyme in steroid metabolism? Planta 209:478–486PubMedGoogle Scholar
  21. Fraenkel GS (1959) The raison d’etre of secondary plant substances; these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129:1466–1470PubMedGoogle Scholar
  22. Francis F, Lognay G, Wathelet JP, Haubruge E (2002) Characterisation of aphid myrosinase and degradation studies of glucosinolates. Arch Insect Biochem Physiol 50:173–182PubMedGoogle Scholar
  23. Frisch T, Møller BL (2012) Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in Alliaria petiolata. FEBS J 279:1545–1562PubMedGoogle Scholar
  24. Fürst R, Zundorf I, Dingermann T (2017) New knowledge about old drugs: the Anti-inflammatory properties of cardiac glycosides. Planta Med 83:977–984PubMedGoogle Scholar
  25. Gärtner DE, Keilholz W, Seitz HU (1994) Purification, characterization and partial peptide microsequencing of progesterone 5 beta-reductase from shoot cultures of Digitalis purpurea. Eur J Biochem 225:1125–1132PubMedGoogle Scholar
  26. Gómez JM (2005) Non-additive effects of herbivores and pollinators on Erysimum mediohispanicum (Cruciferae) fitness. Oecologia 143(3):412–418PubMedGoogle Scholar
  27. Gomez JM, Perfectti F, Lorite J (2015) The role of pollinators in floral diversification in a clade of generalist flowers. Evolution 69:863–878PubMedGoogle Scholar
  28. Gurel E, Karvar S, Yucesan B, Eker I, Sameeullah M (2017) An overview of cardenolides in Digitalis—more than a cardiotonic compound. Curr Pharm Des 23:5104–5114PubMedGoogle Scholar
  29. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333PubMedGoogle Scholar
  30. Haribal M, Renwick JA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594PubMedGoogle Scholar
  31. Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The glucosinolates. Plant Physiol 97:217–226PubMedPubMedCentralGoogle Scholar
  32. Henzi MX, Christey MC, McNeil DL (2000) Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep 19:994–999Google Scholar
  33. Herl V, Fischer G, Muller-Uri F, Kreis W (2006) Molecular cloning and heterologous expression of progesterone 5 beta-reductase from Digitalis lanata Ehrh. Phytochemistry 67:225–231PubMedGoogle Scholar
  34. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66Google Scholar
  35. Huang XP, Renwick JAA (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomol Exp Appl 68:59–69Google Scholar
  36. Huang X, Renwick JA, Sachdev-Gupta K (1993) A chemical basis for differential acceptance of Erysimum cheiranthoides by two Pieris species. J Chem Ecol 19:195–210PubMedGoogle Scholar
  37. Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H (2016) Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol 33:394–412PubMedGoogle Scholar
  38. Jaretzky R, Wilcke M (1932) Die herzwirksamen Glykoside von Cheiranthus cheiri und verwandten Arten. Arch Pharm 270:81–94Google Scholar
  39. Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938PubMedPubMedCentralGoogle Scholar
  40. Jones AM, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol 31:1–5PubMedGoogle Scholar
  41. Karlsson LM, Milberg P (2002) Stratification responses in the late-germinating summer annual weed Erysimum cheiranthoides. J Appl Bot 76:172–175Google Scholar
  42. Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682PubMedGoogle Scholar
  43. Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51:1062–1076PubMedGoogle Scholar
  44. Kreis W (2017) The foxgloves (Digitalis) revisited. Planta Med 83:962–976PubMedGoogle Scholar
  45. Kreis W, Müller-Uri F (2010) Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism, vol 40. CRC Press, Sheffield, pp 304–363Google Scholar
  46. Kreis W, Hensel A, Stuhlemmer U (1998) Cardenolide biosynthesis in foxglove. Planta Med 64:491–499Google Scholar
  47. Kuate SP, Padua RM, Eisenbeiss WF, Kreis W (2008) Purification and characterization of malonyl-coenzyme A: 21-hydroxypregnane 21-O-malonyltransferase (Dp21MaT) from leaves of Digitalis purpurea L. Phytochemistry 69:619–626PubMedGoogle Scholar
  48. Latowski K, Kortus M, Kowalewski Z (1979) Jtola kardenolidow w ocenie chemotaksonomicznej niektorych gatunkow z rodzaju Erysimum, Cheiranthus i Sisymbrium—the role of cardenolides in the chemotaxonomical evaluation of some species of the genera Erysimum, Cheiranthus, and Sisymbrium. Fragm Florist et Geobot 25:261–268Google Scholar
  49. Lei ZH, Yahara S, Nohara T, Shan TB, Xiong JZ (1996) Cardenolides from Erysimum cheiranthoides. Phytochemistry 41:1187–1189PubMedGoogle Scholar
  50. Lei ZH, Jin ZX, Ma YL, Tai BS, Kong Q, Yahara S, Nohara T (1998) Cardiac glycosides from Erysimum cheiranthoides. Phytochemistry 49:1801–1803PubMedGoogle Scholar
  51. Lei ZH, Yahara S, Nohara T, Tai BS, Xiong JZ, Ma YL (2000) Cardiac glycosides from Erysimum cheiranthoides. Chem Pharm Bull (Tokyo) 48:290–292Google Scholar
  52. Lei ZH, Nakayama H, Kuniyasu A, Tai BS, Nohara T (2002) Cardiac glycosides from Erysimum cheiranthoides. Chem Pharm Bull (Tokyo) 50:861–862Google Scholar
  53. Liu X, Brost J, Hutcheon C, Guilfoil R, Wilson AK, Leung S, Shewmaker CK, Rooke S, Nguyen T, Kiser J, De Rocher J (2012) Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants. In Vitro Cell Dev Biol Plant 48:462–468Google Scholar
  54. Luckner M, Wichtl M (2000) Digitalis: Geschichte, Biologie, Chemie, Physiologie, Molekularbiologie, medizinische Anwendung. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  55. Makarevich FI, Kolesnikov DG (1965) Cardenolides of the seeds of Erysimum cheiranthoides L. Khim Prir Soedin 1:363Google Scholar
  56. Makarevich FI, Zhernoklev KV, Slyusarskaya TB, Yarmolenko GN (1994) Cardenolide-containing plants of the family Cruciferae. Chem Nat Comp 30:275–289Google Scholar
  57. Melero CP, Medarde M, San Feliciano A (2000) A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules 5:51–81Google Scholar
  58. Moazzeni H, Zarre S, Pfeil BE, Bertrand YJK, German DA, Al-Shehbaz IA, Mummenhoff K, Oxelman B (2014) Phylogenetic perspectives on diversification and character evolution in the species-rich genus Erysimum (Erysimeae; Brassicaceae) based on a densely sampled ITS approach. Bot J Linn Soc 175:497–522Google Scholar
  59. Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198PubMedGoogle Scholar
  60. Munkert J, Bauer P, Burda E, Muller-Uri F, Kreis W (2011) Progesterone 5beta-reductase of Erysimum crepidifolium: cDNA cloning, expression in Escherichia coli, and reduction of enones with the recombinant protein. Phytochemistry 72:1710–1717PubMedGoogle Scholar
  61. Munkert J, Ernst M, Muller-Uri F, Kreis W (2014) Identification and stress-induced expression of three 3beta-hydroxysteroid dehydrogenases from Erysimum crepidifolium Rchb. and their putative role in cardenolide biosynthesis. Phytochemistry 100:26–33PubMedGoogle Scholar
  62. Munkert J, Costa C, Budeanu O, Petersen J, Bertolucci S, Fischer G, Muller-Uri F, Kreis W (2015a) Progesterone 5beta-reductase genes of the Brassicaceae family as function-associated molecular markers. Plant Biol 17:1113–1122PubMedGoogle Scholar
  63. Munkert J, Pollier J, Miettinen K, Van Moerkercke A, Payne R, Muller-Uri F, Burlat V, O’Connor SE, Memelink J, Kreis W, Goossens A (2015b) Iridoid synthase activity is common among the plant progesterone 5beta-reductase family. Mol Plant 8:136–152PubMedGoogle Scholar
  64. Nagata W, Tamm C, Reichstein T (1957) Die Glykoside von Erysimum crepidifolium HGL Reichenbach. Glykoside und Aglykone 169. Mitteilung. Helv Chim Acta 40:41–61Google Scholar
  65. Nielsen JK (1978a) Host plant discrimination within Cruciferae—feeding responses of 4 leaf beetles (Coleoptera-Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol Exp Appl 24:41–54Google Scholar
  66. Nielsen JK (1978b) Host plant selection of monophagous and oligophagous flea beetles feeding on crucifers. Entomol Exp Appl 24:562–569Google Scholar
  67. Nielsen JK, Nagao T, Okabe H, Shinoda T (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285PubMedGoogle Scholar
  68. Patel S (2016) Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomed Pharmacother 84:1036–1041Google Scholar
  69. Pliny the Elder (77) Naturalis Historia, Book 18. RomeGoogle Scholar
  70. Polatschek A (2010) Revision der Gattung Erysimum (Cruciferae): Teil 1: Russland, die Nachfolgestaaten der USSR (excl. Georgien, Armenien, Azerbaidzan), China, Indien, Pakistan, Japan und Korea. Ann Naturhistorischen Mus Wien Serie B 111:181–275Google Scholar
  71. Polatschek A (2011) Revision der Gattung Erysimum (Cruciferae), Teil 2: Georgien, Armenien, Azerbaidzan, Türkei, Syrien, Libanon, Israel, Jordanien, Irak, Iran, Afghanistan. Ann Naturhistorischen Mus Wien Serie B 112:369–497Google Scholar
  72. Polatschek A (2012) Revision der Gattung Erysimum (Cruciferae), Teil 3: amerika und Grönland. Ann Naturhistorischen Mus Wien Serie B 113:139–192Google Scholar
  73. Polatschek A, Snogerup S (2002) Erysimum. In: Strid A, Tan KG (eds) Flora Hellenica 2. Koeltz Scientific Books, Koenigstein, pp 130–152Google Scholar
  74. Pontoppidan B, Ekbom B, Eriksson S, Meijer J (2001) Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a Brassica herbivore. Eur J Biochem 268:1041–1048PubMedGoogle Scholar
  75. Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242Google Scholar
  76. Qing CM, Fan L, Yao L, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72Google Scholar
  77. Rahier A, Darnet S, Bouvier F, Camara B, Bard M (2006) Molecular and enzymatic characterizations of novel bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana. J Biol Chem 281:27264–27277PubMedGoogle Scholar
  78. Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228PubMedGoogle Scholar
  79. Renwick JAA, Radke CD (1985) Constituents of host plants and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae. Entomol Exp Appl 39:21–26Google Scholar
  80. Renwick JA, Radke CD (1987) Chemical stimulants and deterrents regulating acceptance or rejection of crucifers by cabbage butterflies. J Chem Ecol 13:1771–1776PubMedGoogle Scholar
  81. Renwick JA, Radke CD, Sachdev-Gupta K (1989) Chemical constituents of Erysimum cheiranthoides deterring oviposition by the cabbage butterfly, Pieris rapae. J Chem Ecol 15:2161–2169PubMedGoogle Scholar
  82. Rodman J, Brower LP, Frey J (1982) Cardenolides in North American Erysimum (Cruciferae), a preliminary chemotaxonomic report. Taxon 31:507–516Google Scholar
  83. Sachdev-Gupta K, Renwick JA, Radke CD (1990) Isolation and identification of oviposition deterrents to cabbage butterfly, Pieris rapae, from Erysimum cheiranthoides. J Chem Ecol 16:1059–1067PubMedGoogle Scholar
  84. Sachdev-Gupta K, Radke C, Renwick JA, Dimock MB (1993) Cardenolides from Erysimum cheiranthoides: feeding deterrents to Pieris rapae larvae. J Chem Ecol 19:1355–1369PubMedGoogle Scholar
  85. Schneider NFZ, Cerella C, Simoes CMO, Diederich M (2017) Anticancer and immunogenic properties of cardiac glycosides. Molecules. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sedbrook JC, Phippen WB, Marks MD (2014) New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci 227:122–132PubMedGoogle Scholar
  87. Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M, Okabe H, Kawai A (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599PubMedGoogle Scholar
  88. Singh B, Rastogi RP (1970) Cardenolides–glycosides and genins. Phytochemistry 9:315–331Google Scholar
  89. Städler E, Renwick JAA, Radke CD, Sachdev-Gupta K (1995) Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol Ent 20:175Google Scholar
  90. Steyn PS, van Heerden FR (1998) Bufadienolides of plant and animal origin. Nat Prod Rep 15:397–413PubMedGoogle Scholar
  91. Stoll A (1937) The Cardiac Glycosides. A series of three lectures delivered in the College of the Pharmaceutical Society of Great Britain under the auspices of the University of London. The Pharmaceutical Press, LondonGoogle Scholar
  92. Tabermontanus TJ (1588) Neuw Kreuterbuch. N. Bassaeus, FrankfurtGoogle Scholar
  93. Theurer C, Treumann HJ, Faust T, May U, Kreis W (1994) Glycosylation in cardenolide biosynthesis. Plant Cell Tissue Organ Cult 38:327–335Google Scholar
  94. Weber MG, Agrawal AA (2014) Defense mutualisms enhance plant diversification. Proc Natl Acad Sci USA 111:16442–16447PubMedGoogle Scholar
  95. Wiklund C, Ahrberg C (1978) Host plants, nectar source plants, and habitat selection of males and females of Anthocharis cardamines (Lepidoptera). Oikos 31:169–183Google Scholar
  96. Withering W (1785) An account of foxglove and some of its medicinal uses. M. Swynney, LondonGoogle Scholar
  97. Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864PubMedGoogle Scholar
  98. Zhou TY, Lou LL, Yang G, Dorofeyev VI, Al-Shehbaz IA (2001) Erysimum Linnaeus. In: Wu ZY, Raven PH (eds) Flora of China. Missouri Botanical Garden Press, St. Louis, pp 163–169Google Scholar
  99. Zhu YC (1989) Plantae medicinales Chinae boreali-orientalis. Heilongjiang Science and Technology Publishing House, HarbinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Boyce Thompson InstituteIthacaUSA

Personalised recommendations