Phytochemistry Reviews

, Volume 16, Issue 6, pp 1269–1282 | Cite as

l-Canavanine: How does a simple non-protein amino acid inhibit cellular function in a diverse living system?

  • Paweł Staszek
  • Leslie A. Weston
  • Katarzyna Ciacka
  • Urszula KrasuskaEmail author
  • Agnieszka Gniazdowska


l-Canavanine (CAN) is a non-protein amino acid (NPAA) possessing toxic properties in both animal and plant systems. Upon treatment, this arginine structural analogue is typically incorporated into proteins by arginyl-tRNA synthetase, leading to rapid functional disruption of such “canavanyl proteins”. CAN is produced in many legumes including jack bean and lucerne (alfalfa) and is accumulated mainly in seeds and their newly germinating sprouts. It has been described as a potent allelochemical and its toxicity has been associated with autoimmunological diseases in humans or animals feeding on plants containing this NPAA. Application of CAN even at low concentration resulted in an inhibition of plant growth. When CAN was used as an anticancer agent, its mode of action appears to be associated with the synthesis of non-functional proteins in sensitive organisms, a similar mode of action to that of other simple NPAAs as meta-tyrosine. CAN toxicity in plants is also likely associated with the formation of non-functional proteins and its application has been shown to cause disruption of polyamine metabolism and formation of reactive nitrogen species including nitric oxide (NO). In higher plants, CAN has recently been used as a tool to study the regulation or modulation of polyamine–NO cross-talk. Comparing to other related NPAAs that impact cellular function in living plant and animal systems CAN seems to have the highest toxic properties. The aim of this review is to describe CAN specific activity and mode of action especially focused on higher plant systems.


Arginine analogue Plants Toxicity 





Non-protein amino acid


Plant secondary metabolites


Reactive oxygen species


Reactive nitrogen species



The review was supported by the Project 2014/13/B/NZ9/02074 financed by the National Science Centre, Poland awarded to AG and a Project DI2013012843 supported by the Ministry of Science and Higher Education, Poland awarded to PS. We thank Dr. S. Gurusinghe at CSU for his thorough review and comments on this manuscript.


  1. Abd El-Gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and l-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263. doi: 10.1006/phrs.2000.0781 PubMedCrossRefGoogle Scholar
  2. Akaogi J, Barker T, Kuroda Y et al (2006) Role of non-protein amino acid l-canavanine in autoimmunity. Autoimmun Rev 5:429–435. doi: 10.1016/j.autrev.2005.12.004 PubMedCrossRefGoogle Scholar
  3. Aslam M, Oaks A, Boesel I (1987) Effect of l-canavanine on nitrate reductase in corn roots. Plant Physiol 62:693–695. doi: 10.1104/pp.62.5.693 CrossRefGoogle Scholar
  4. Bell EA (2003) Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem 51:2854–2865. doi: 10.1021/jf020880w PubMedCrossRefGoogle Scholar
  5. Bell EA, Lackey JA, Pohill RM (1978) Systematic significance of canavanine in the Papilionoideae (Faboideae). Biochem Syst Ecol 6:201–212. doi: 10.1016/0305-1978(78)90008-X CrossRefGoogle Scholar
  6. Bertin C, Weston LA, Huang T et al (2007) Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proc Natl Acad Sci USA 104:16964–16969. doi: 10.1073/pnas.0707198104 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Birdsall TC (1998) 5-Hydroxytryptophan: a clinically effective serotonin precursor. Altern Med Rev 3:271–280PubMedGoogle Scholar
  8. Colling J, Stander MA, Makunga NP (2010) Nitrogen supply and abiotic stress influence canavanine synthesis and the productivity of in vitro regenerated Sutherlandia frutescens microshoots. J Plant Physiol 167:1521–1524. doi: 10.1016/j.jplph.2010.05.018 PubMedCrossRefGoogle Scholar
  9. Dahlman DL, Rosenthal GA (1975) Non- protein amino acid-insect interactions. I. Growth effects and symptomatology of l-canavanine consumption by tobacco hornworm, Manduca sexta (L.). Comp Biochem Physiol 51A:33–36. doi: 10.1016/0300-9629(75)90409-0 CrossRefGoogle Scholar
  10. Dahlman DL, Rosenthal GA (1976) Further studies of the effect of l-canavanine on the tobacco hornworm, Manduca sexta (L.) (Sphingidae). J Insect Physiol 22:265–271. doi: 10.1016/0022-1910(76)90035-4 PubMedCrossRefGoogle Scholar
  11. Dalzell SA, Burnett DJ, Dowsett JE et al (2012) Prevalence of mimosine and DHP toxicity in cattle grazing Leucaena leucocephala pastures in Queensland, Australia. Anim Prod Sci 52:365–372. doi: 10.1071/AN11236 CrossRefGoogle Scholar
  12. Damodaran M, Karayanan KGA (1940) A comparative study of arginase and canavanase. Biochem J 34:1449–1459. doi: 10.1042/bj0341449 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Davis DG (1997) Polyamines, auxins and organogenesis in leafy spurge (Euphorbia esula L.). J Plant Physiol 151:603–609. doi: 10.1016/S0176-1617(97)80237-4 CrossRefGoogle Scholar
  14. Demiryürek AT, Kennedy S, Wainwright CL et al (1997) Influence of nitric oxide on luminol-enhanced chemiluminescence measured from porcine-stimulated leukocytes. J Cardiovasc Pharmacol 30:332–337. doi: 10.1097/00005344-199709000-00010 PubMedCrossRefGoogle Scholar
  15. Devambez I, Ali Agha M, Mitri C et al (2013) Gαo is required for l-canavanine detection in Drosophila. PLoS ONE 8(5):e63484. doi: 10.1371/journal.pone.0063484 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Downum KR, Rosenthal GA, Cohen WS (1983) l-Arginine and l-canavanine metabolism in jack bean, Canavalia ensiformis (L.) DC. and soybean, Glycine max (L.) Merr. Plant Physiol 73:965–968PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ekanayake S, Skog K, Asp NG (2007) Canavanine content in sword beans (Canavalia gladiata): analysis and effect of processing. Food Chem Toxicol 45:797–803. doi: 10.1016/j.fct.2006.10.030 PubMedCrossRefGoogle Scholar
  18. Fearon WR, Bell EA (1955) Canavanine: detection and occurrence in Colutea arborescens. Biochem J 59:221–224. doi: 10.1042/bj0590221 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fletcher MT, Al Jassim RAM, Cawdell-Smith AJ (2015) The occurrence and toxicity of indospicine to grazing animals. Agriculture 5:427–440. doi: 10.3390/agriculture5030427 CrossRefGoogle Scholar
  20. Fujii Y (2003) Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from velvet bean (Mucuna pruriens) and hairy vetch (Vicia villosa). Biol Sci Space 17:6–13. doi: 10.2187/bss.17.6 PubMedCrossRefGoogle Scholar
  21. Gardner DR, Riet-Correa F (2011) Analysis of the toxic amino acid indospicine by liquid chromatography–tandem mass spectrometry. Int J Poisonous Plant Res 1:20–27Google Scholar
  22. Gautam B, Vadivel V, Stuetz W et al (2012) Bioactive compounds extracted from Indian wild legume seeds: antioxidant and type II diabetes-related enzyme inhibition properties. Int J Food Sci Nutr 63:242–245. doi: 10.3109/09637486.2011.621413 PubMedCrossRefGoogle Scholar
  23. Goyoaga C, Burbano C, Cuadrado C et al (2008) Content and distribution of vicine, convicine and L-DOPA during germination and seedling growth of two Vicia faba L. varieties. Eur Food Res Technol 227:1537–1542. doi: 10.1007/s00217-008-0876-0 CrossRefGoogle Scholar
  24. Green MH, Ward JF (1983) Enhancement of human tumor cell killing by l-canavanine in combination with γ-radiation. Cancer Res 40:4180–4182Google Scholar
  25. Gurer-Orhan H, Ercal N, Mare S et al (2006) Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochem J 395:277–284. doi: 10.1042/BJ20051964 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hachinohe M, Matsumoto H (2007) Mechanism of selective phytotoxicity of l-3,4- dihydroxyphenylalanine (l-DOPA) in barnyard grass and lettuce. J Chem Ecol 33:1919–1926. doi: 10.1007/s10886-007-9359-1 PubMedCrossRefGoogle Scholar
  27. Hagin RD (1989) Isolation and identification of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophan, major allelopathic aglycons in quackgrass (Agropyron repens L. Beauv.). J Agric Food Chem 37:1143–1149. doi: 10.1021/jf00088a072 CrossRefGoogle Scholar
  28. Hassall CH, Reyle K (1955) Hypoglycin A and B, two biologically active polypeptides from Blighia sapida. Biochem J 60:334–339. doi: 10.1042/bj0600334 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hegdekar BM (1970) Amino acid analogues as inhibitors of insect reproduction. J Econ Entomol 63:1950–1956. doi: 10.1093/jee/63.6.1950 PubMedCrossRefGoogle Scholar
  30. Högenauer G, Kreil G, Bernheimer H (1978) Studies on the binding of DOPA (3,4 dihydroxyphenylalanine) to tRNA. FEBS Lett 88:101–104. doi: 10.1016/0014-5793(78)80617-6 PubMedCrossRefGoogle Scholar
  31. Huang T (2010) The nonprotein amino acid meta-tyrosine: its biosynthesis, phytotoxicity, and application as a tool for research on aromatic amino acid metabolism in plants. Dissertation, Cornell UniversityGoogle Scholar
  32. Huang T, Rehak L, Jander G (2012) meta-Tyrosine in Festuca rubra ssp. commutata (Chewings fescue) is synthesized by hydroxylation of phenylalanine. Phytochemistry 75:60–66. doi: 10.1016/j.phytochem.2011.09.018 PubMedCrossRefGoogle Scholar
  33. Hwang ID, Lee Y, Kim SG et al (1996) Enzyme activities of canavanine metabolism in Canavalia lineata L. callus. J Plant Physiol 149:494–500. doi: 10.1016/S0176-1617(96)80324-5 CrossRefGoogle Scholar
  34. Igloi GL, Schiefermayr E (2009) Amino acid discrimination by arginyl-tRNA synthetases as revealed by an examination of natural specificity variants. FEBS J 276:1307–1318. doi: 10.1111/j.1742-4658.2009.06866.x PubMedCrossRefGoogle Scholar
  35. Ipson BR, Fisher AL (2016) Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress. Ageing Res Rev 27:93–107. doi: 10.1016/j.arr.2016.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ishida Y, Park J-H, Mao L et al (2013) Replacement of all arginine residues with canavanine in MazF-bs mRNA interferase changes its specificity. J Biol Chem 288:7564–7571. doi: 10.1074/jbc.M112.434969 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jang MH, Jun DY, Rue SW et al (2002) Arginine antimetabolite l-canavanine induces apoptotic cell death in human Jurkat T cells via caspase-3 activation regulated by Bcl-2 or Bcl-xL. Biochem Biophys Res Commun 295:283–288PubMedCrossRefGoogle Scholar
  38. Kalyankar GD, Ikawa M, Snell EE (1958) The enzymatic cleavage of canavanine to homoserine and hydroxyguanidine. J Biol Chem 233:1175–1178PubMedGoogle Scholar
  39. Kamo T, Sakurai S, Yamanashi T et al (2015) Cyanamide is biosynthesized from l-canavanine in plants. Sci Rep 5:10527. doi: 10.1038/srep10527 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Keshavan ND, Chowdhary PK, Haines DC et al (2005) l-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436. doi: 10.1128/JB.187.24.8427-8436.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kihara H, Prescott JM, Snell EE (1955) The bacterial cleavage of canavanine to homoserine and guanidine. J Biol Chem 217:497–504PubMedGoogle Scholar
  42. Kim LT, Heo BJ, Kim HP (1997) l-DOPA auto-oxidation and inhibitory activities of tyrosinase. J Cosmet Sci 19:291–298CrossRefGoogle Scholar
  43. Klipcan L, Moor N, Kessler N et al (2009) Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine. Proc Natl Acad Sci USA 106:11045–11048. doi: 10.1073/pnas.0905212106 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Konovalova S, Hilander T, Loayza-Puch F et al (2015) Exposure to arginine analog canavanine induces aberrant mitochondrial translation products, mitoribosome stalling, and instability of the mitochondrial proteome. Int J Biochem Cell Biol 65:268–274. doi: 10.1016/j.biocel.2015.06.018 PubMedCrossRefGoogle Scholar
  45. Kostrzewa RM, Kostrzewa JP, Brus R (2002) Neuroprotective and neurotoxic roles of levodopa (l-DOPA) in neurodegenerative disorders relating to Parkinson’s disease. Amino Acids 23:57–63. doi: 10.1007/s00726-001-0110-x PubMedCrossRefGoogle Scholar
  46. Krakauer J, Long Y, Kolbert A et al (2015) Presence of l-canavanine in Hedysarum alpinum seeds and its potential role in the death of Chris McCandless. Wilderness Environ Med 26:36–42. doi: 10.1016/j.wem.2014.08.014 PubMedCrossRefGoogle Scholar
  47. Krasuska U, Ciacka K, Bogatek R et al (2014) Polyamines and nitric oxide link in regulation of dormancy removal and germination of apple (Malus domestica Borkh.) embryos. J Plant Growth Regul 33:590–601. doi: 10.1007/s00344-013-9408-7 CrossRefGoogle Scholar
  48. Krasuska U, Andrzejczak O, Staszek P et al (2016a) Canavanine alters ROS/RNS level and leads to posttranslational modification of proteins in roots of tomato seedlings. Front Plant Sci. doi: 10.3389/fpls.2016.00840 PubMedPubMedCentralGoogle Scholar
  49. Krasuska U, Andrzejczak O, Staszek P et al (2016b) Toxicity of canavanine in tomato (Solanum lycopersicum L.) roots is due to alterations in RNS, ROS and auxin levels. Plant Physiol Biochem 103:84–95. doi: 10.1016/j.plaphy.2016.03.005 PubMedCrossRefGoogle Scholar
  50. Krasuska U, Ciacka K, Orzechowski S, Fettke J, Bogatek R, Gniazdowska A (2016c) Modification of the endogenous NO level influences apple embryos dormancy by alterations of nitrated and biotinylated protein patterns. Planta 244:877–891. doi: 10.1007/s00425-016-2553-z PubMedCrossRefGoogle Scholar
  51. Krasuska U, Andrzejczak O, Staszek P, Borucki W, Gniazdowska A (2017) meta-Tyrosine induces modification of reactive nitrogen species level, protein nitration and nitrosoglutathione reductase in tomato roots. Nitric Oxide Biol Chem 68:56–67. doi: 10.1016/j.niox.2016.10.008 CrossRefGoogle Scholar
  52. Li XL, Atkinson RN, King SB (2001) Preparation and evaluation of new l-canavanine derivatives as nitric oxide synthase inhibitors. Tetrahedron 57:6557–6565. doi: 10.1016/S0040-4020(01)00547-6 CrossRefGoogle Scholar
  53. Luzzi SD, Marletta MA (2005) l-Arginine analogs as alternate substrates for nitric oxide synthase. Bioorg Med Chem Lett 15:3934–3941. doi: 10.1016/j.bmcl.2005.05.088 PubMedCrossRefGoogle Scholar
  54. MacGregor KB, Shelp BJ, Peiris S et al (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. J Chem Ecol 29:2177–2182. doi: 10.1023/A:1025650914947 PubMedCrossRefGoogle Scholar
  55. Madsen NP, Hegarty MP (1970) Inhibition of rat liver homogenate arginase activity in vitro by the hepatotoxic amino acid indospicine. Biochem Pharmacol 19:2391–2393PubMedCrossRefGoogle Scholar
  56. Madsen NP, Christie GS, Hegarty MP (1970) Effect of indospicine on incorporation of l-arginine-14C into protein and transfer ribonucleic acid by cell-free systems from rat liver. Biochem Pharmacol 19:853–857. doi: 10.1016/0006-2952(70)90247-9 PubMedCrossRefGoogle Scholar
  57. Malinow MR, Bardana EJ, Pirofsky B et al (1982) Systemic lupus erythematosus-like syndrome in monkeys fed alfalfa sprouts: role of a non-protein amino acid. Science 216:415–417. doi: 10.1126/science.7071589 PubMedCrossRefGoogle Scholar
  58. Matsumoto H (2011) The mechanisms of phytotoxic action and selectivity of non-protein aromatic amino acids l-DOPA and m-tyrosine. J Pest Sci 36:1–8. doi: 10.1584/jpestics.R10-15 CrossRefGoogle Scholar
  59. McLean MD, Yevtushenko DP, Deschene A et al (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode. Mol Breed 11:277–285. doi: 10.1023/A:1023483106582 CrossRefGoogle Scholar
  60. Melangeli C, Rosenthal GA, Dahlman DL (1997) The biochemical basis for l-canavanine tolerance by the tobacco budworm, Heliothis virescens (Noctuidae). Proc Natl Acad Sci USA 94:1293–1297CrossRefGoogle Scholar
  61. Mendes IS, Rezende MOO (2014) Assessment of the allelopathic effect of leaf and seed extracts of as postemergent bioherbicides: a green alternative for sustainable agriculture. J Environ Sci Health Part B 49:374–380. doi: 10.1080/03601234.2014.882179 CrossRefGoogle Scholar
  62. Metlen KL, Aschehoug ET, Callaway RM (2009) Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant Cell Environ 32:641–653. doi: 10.1111/j.1365-3040.2008.01910.x PubMedCrossRefGoogle Scholar
  63. Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. doi: 10.1146/annurev-arplant-042110-103854 PubMedCrossRefGoogle Scholar
  64. Mitri C, Soustelle L, Framery B et al (2009) Plant insecticide l-canavanine repels Drosophila via the insect orphan GPCR DmX. PLoS Biol 7(6):e1000147. doi: 10.1371/journal.pbio.1000147 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Montanaro A, Bardana EJ Jr (1991) Dietary amino acid-induced systemic lupus erythematosus. Rheum Dis Clin N Am 17:323–332Google Scholar
  66. Nakajima N, Hiradate S, Fujii Y (2001) Plant growth inhibitory activity of l-canavanine and its mode of action. J Chem Ecol 27:19–31. doi: 10.1023/A:1005659714947 PubMedCrossRefGoogle Scholar
  67. Nishihara E, Parvez MM, Araya H et al (2004) Germination growth response of different plant species to the allelochemical l-3,4-dihydroxyphenylalanine (l-DOPA). Plant Growth Regul 42:181–189. doi: 10.1023/B:GROW.0000017483.76365.27 CrossRefGoogle Scholar
  68. Nurcahyanti ADR, Wink M (2016) l-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells. Peer J 4:e1542. doi: 10.7717/peerj.1542 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Palavan-Ünsal N (1987) Polyamine metabolism in the roots of Phaseolus vulgaris. Interaction of the inhibitors of polyamine biosynthesis with putrescine in growth and polyamine biosynthesis. Plant Cell Physiol 28:565–572Google Scholar
  70. Pass MA, Hossein A, Pollitt S et al (1996) Effects of the naturally occurring arginine analogues indospicine and canavanine on nitric oxide mediated functions in aortic endothelium and peritoneal macrophages. Nat Toxins 4:135–140PubMedCrossRefGoogle Scholar
  71. Pugalenthi M, Vadivel V, Siddhuraju P (2005) Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis—a review. Plant Foods Hum Nutr 60:201–218. doi: 10.1007/s11130-005-8620-4 PubMedCrossRefGoogle Scholar
  72. Riganti C, Aldieri E, Bergandi L et al (2003) Nitroarginine methyl ester and canavanine lower intracellular reduced glutathione. Free Radic Biol Med 35:1210–1216. doi: 10.1016/S0891-5849(03)00507-0 PubMedCrossRefGoogle Scholar
  73. Rosenthal GA (1977) Nitrogen allocation for l-canavanine synthesis and its relation to chemical defense of the seed. Biochem Syst Ecol 5:19–20. doi: 10.1016/0305-1978(77)90007-2 CrossRefGoogle Scholar
  74. Rosenthal GA (1982a) l-Canavanine metabolism in jack bean, Canavalia ensiformis (L.) DC. (Leguminosae). Plant Physiol 69:1066–1069. doi: 10.1104/pp.69.5.1066 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rosenthal GA (1982b) Plant nonprotein amino and imino acids Biological, biochemical and toxicological properties. Academic Press, New YorkGoogle Scholar
  76. Rosenthal GA (1991) Metabolism of l-canavanine and l-canaline in leguminous plants. Plant Physiol 94:67–70. doi: 10.1104/pp.94.1.1 Google Scholar
  77. Rosenthal GA (1998) l-Canavanine: a potential chemotherapeutic agent for human pancreatic cancer. Pharm Biol 36:194–201. doi: 10.1076/phbi. CrossRefGoogle Scholar
  78. Rosenthal GA (2001) l-Canavanine: higher plant insecticidal allelochemical. Amino Acids 21:319–330. doi: 10.1007/s007260170017 PubMedCrossRefGoogle Scholar
  79. Rosenthal GA, Dahlman DL (1986) l-Canavanine and protein synthesis in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci 83:14–18. doi: 10.1073/pnas.83.1.14 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rosenthal GA, Dahlman DL (1991) Studies of l-canavanine incorporation into insectan lysozyme. J Biol Chem 266:15684–15687PubMedGoogle Scholar
  81. Rosenthal GA, Harper L (1996) L-homoarginine studies provide insight into the antimetabolic properties of l-canavanine. Insect Biochem Mol Biol 26:389–394. doi: 10.1016/0965-1748(95)00106-9 PubMedCrossRefGoogle Scholar
  82. Rosenthal GA, Janzen DH (1985) Ammonia utilization by the bruchid beetle, Caryedes brasiliensis (Bruchidae). J Chem Ecol 11:539–544. doi: 10.1007/BF00989564 PubMedCrossRefGoogle Scholar
  83. Rosenthal GA, Nkomo P (2000) The natural abundance of l-canavanine, an active anticancer agent, in alfalfa, Medicago sativa (L.). Pharm Biol 38:1–6. doi: 10.1076/1388-0209(200001)3811-BFT001 PubMedCrossRefGoogle Scholar
  84. Rosenthal GA, Janzen DH, Dahlman DL (1977) Degradation and detoxification of canavanine by a specialized seed predator. Science 196:658–660. doi: 10.1126/science.854740 PubMedCrossRefGoogle Scholar
  85. Rosenthal GA, Berge MA, Bleiler JA et al (1987) Aberrant, canavanyl protein formation and the ability to tolerate or utilize l-canavanine. Experientia 43:558–561PubMedCrossRefGoogle Scholar
  86. Rosenthal GA, Lambert J, Hoffmann D (1989) l-Canavanine incorporation into protein can impair macromolecular function. J Biol Chem 264:9768–9771PubMedGoogle Scholar
  87. Roy DN, Sabri MI, Kayton RJ et al (1996) β-Cyano-l-alanine toxicity: evidence for the involvement of an excitotoxic mechanism. Nat Toxins 4:247–253PubMedCrossRefGoogle Scholar
  88. Rubenstein MD (2008) Misincorporation of the proline analog azetidine-2-carboxylic acid in the pathogenesis of multiple sclerosis: a hypothesis. J Neuropathol Exp Neurol 67:1035–1040. doi: 10.1097/NEN.0b013e31818add4a PubMedCrossRefGoogle Scholar
  89. Rubenstein E, Zhou H, Krasinska KM et al (2006) Azetidine-2-carboxylic acid in garden beets (Beta vulgaris). Phytochemistry 67:898–903. doi: 10.1016/j.phytochem.2006.01.028 PubMedCrossRefGoogle Scholar
  90. Schwartz M, Altman A, Cohen Y et al (1997) Inhibition of polyamine biosynthesis by l-canavanine and its effect on meristematic activity, growth, and development of Zea mays roots. Isr J Plant Sci 45:23–30. doi: 10.1080/07929978.1997.10676666 CrossRefGoogle Scholar
  91. Smith RH (1980) Kale poisoning: the brassica anaemia factor. Vet Rec 107:12–15. doi: 10.1007/BF02291432 PubMedCrossRefGoogle Scholar
  92. Soares AR, de Lourdes Lucio Ferrarese M, de Cássia Siqueira-Soares M et al (2011) The allelochemical l-DOPA increases melanin production and reduces reactive oxygen species in soybean roots. J Chem Ecol 37:891–898. doi: 10.1007/s10886-011-9988-2 PubMedCrossRefGoogle Scholar
  93. Soares AR, de Cassia Siqueira-Soares R, Salvador VH et al (2012) The effects of l-DOPA on root growth, lignification and enzyme activity in soybean seedlings. Acta Physiol Plant 34:1811–1817. doi: 10.1007/s11738-012-0979-x CrossRefGoogle Scholar
  94. Soares AR, Marchiosi R, de Cássia Siqueira-Soares R et al (2014) The role of l-DOPA in plants. Plant Signal Behav 9:e28275. doi: 10.4161/psb.28275 PubMedCentralCrossRefGoogle Scholar
  95. Soltys D, Rudzińska-Langwald A, Kurek W et al (2011) Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta 234:609–621. doi: 10.1007/s00425-011-1429-5 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Soltys D, Rudzińska-Langwald A, Gniazdowska A et al (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638. doi: 10.1007/s00425-012-1722-y PubMedPubMedCentralCrossRefGoogle Scholar
  97. Soltys D, Krasuska U, Bogatek R et al (2013) Allelochemicals as bioherbicides—present and perspectives. In: Prince AJ, Kelton JA (eds) Herbicides current research and case studies in use. InTech, Rijeka. doi: 10.5772/56185 Google Scholar
  98. Soltys D, Rudzińska-Langwald A, Kurek W et al (2014) Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression. J Plant Physiol 171:565–575. doi: 10.1016/j.jplph.2014.01.004 PubMedCrossRefGoogle Scholar
  99. Swaffar DS, Ang CY, Desai PB et al (1994) Inhibition of the growth of human pancreatic cancer cells by the arginine antimetabolite, l-canavanine. Cancer Res 54:6045–6048PubMedGoogle Scholar
  100. Swaffar DS, Choo YA, Desai PB et al (1995) Combination therapy with 5-flurouracil and l-canavanine: in vitro and in vivo studies. Anticancer Res 6:586–593. doi: 10.1097/00001813-199508000-00012 CrossRefGoogle Scholar
  101. Turner BL, Harborne JB (1967) Distribution of canavanine in the plant kingdom. Phytochemistry 6:863–866. doi: 10.1016/S0031-9422(00)86033-1 CrossRefGoogle Scholar
  102. Vannini F, Kashfi K, Nath N (2015) The dual role of iNOS in cancer. Redox Biol 6:334–343. doi: 10.1016/j.redox.2015.08.009 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vranova V, Rejsek K, Skene KR et al (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48. doi: 10.1007/s11104-010-0673-y CrossRefGoogle Scholar
  104. Vynnytska BO, Mayevska OM, Kurlishchuk YV et al (2011) Canavanine augments proapoptotic effects of arginine deprivation in cultured human cancer cells. Anticancer Drugs 22:148–157. doi: 10.1097/CAD.0b013e32833e0334 PubMedCrossRefGoogle Scholar
  105. Wallace HM, Keir HM (1986) Factors affecting polyamine excretion from mammalian cells in culture: inhibitors of polyamine biosynthesis. FEBS Lett 194:60–63. doi: 10.1016/0014-5793(86)80051-5 PubMedCrossRefGoogle Scholar
  106. Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389. doi: 10.1080/713610861 CrossRefGoogle Scholar
  107. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19PubMedCrossRefGoogle Scholar
  108. Worst EG, Exner MP, De Somone A et al (2015) Cell-free expression with the toxic amino acid canavanine. Bioorg Med Chem Lett 25:3658–3660. doi: 10.1016/j.bmcl.2015.06.045 PubMedCrossRefGoogle Scholar
  109. Xuan TD, Elzaawely AA, Deba F et al (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron Sustain Dev 26:89–97. doi: 10.1051/agro:2006001 CrossRefGoogle Scholar
  110. Zhang W, Ames BD, Walsh CT (2011) Identification of phenylalanine-3-hydroxylase for meta-tyrosine biosynthesis. Biochemistry 50:5401–5403. doi: 10.1021/bi200733c PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhao L, Chen X, Hu Z et al (1999) Analysis of β-N-oxalyl-α,β-diaminopropionic acid and homoarginine in Lathyrus sativus by capillary zone electrophoresis. J Chromatogr A 857:295–302. doi: 10.1016/S0021-9673(99)00788-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Plant Physiology, Faculty of Agriculture and BiologyWarsaw University of Life Sciences-SGGWWarsawPoland
  2. 2.Graham Centre for Agricultural InnovationCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations