Advertisement

Phytochemistry Reviews

, Volume 16, Issue 5, pp 1081–1094 | Cite as

Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: a review

  • Gustavo E. ZúñigaEmail author
  • Andrea Tapia
  • Andrea Arenas
  • Rodrigo A. Contreras
  • Gustavo Zúñiga-Libano
Article
  • 364 Downloads

Abstract

Aristotelia chilensis (Mol.) Stuntz, commonly called Maqui, is known for its pharmacological uses in traditional medicine of native Mapuche communities in Chile. It is reported to have excellent medicinal properties that help to cure chronic diarrhea, dysentery, throat diseases, intestinal tumors, fever, wounds healing, and scars. Pharmacologically, fruits and leaves of Maqui have been investigated for antioxidant, antidiabetic, and antiviral activities. The current high demand of natural antioxidants has placed Maqui as one of the most over-exploited species in Chile. This review analyzes the information collected from the published research articles, and highlights the phytochemical and pharmacological aspects of A. chilensis. The information will be useful to develop new strategies of sustainable use of the species to generate new formulations with therapeutic and economical value in the future.

Keywords

Aristotelia chilensis Maqui berry Antioxidants Anthocyanins Flavonoids 

Notes

Acknowledgements

Financial support from Corporación de Fomento (CORFO, Chile) Grants 11IDL2-10573 and 13IDL2-18 and Proyectos Basales (2017) is gratefully acknowledged.

References

  1. Alonso J (2012) Maqui (Aristotelia chilensis): un nutracéutico de relevancia medicinal. Revista Farmacológica de Chile 5:95–100Google Scholar
  2. Alvarado JL, Leschot A, Olivera-Nappa A, Salgado AM, Rioseco H, Lyon C, Vigil P (2016) Delphinidin-rich maqui berry extract (Delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Res Int 2016. doi: 10.1155/2016/9070537
  3. Anderson O, Jordheim M (2014) Basic anthocyanin chemistry and dietary sources. In: Wallace T, Giusti MM (eds) Anthocyanins in health and disease, chapter 2. CRC Press, Boca RatonGoogle Scholar
  4. Benedetti S (2012) Información Tecnológica de Productos Forestales No Madereros Del Bosque Nativo En Chile. In: Benedetti S (ed) Monografia de MAQUI Aristotelia Chilensis (Mol.) Stuntzs. Instituto Forestal Chile, Santiago, pp 6–51Google Scholar
  5. Bhakuni DS, Silva M, Matlin SA, Sammes PG (1976) Aristoteline and aristotelone, unusual indole alkaloids from Aristotelia chilensis. Phytochemistry 15:574–575CrossRefGoogle Scholar
  6. Bittner M, Silva M, Gopalakrishna EM, Watson WH, Zabel V, Matlin SA, Sammes PG (1978) New alkaloids from Aristotelia chilensis (Mol.) Stuntz. J Chem Soc Chem Commmun 2:79–80CrossRefGoogle Scholar
  7. Brauch JE, Buchweitz M, Schweiggert RM, Carle R (2016) Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem 190:308–316CrossRefPubMedGoogle Scholar
  8. Brauch JE, Reuter L, Conrad J, Vogel H, Schweiggert RM, Carle R (2017) Characterization of anthocyanins in novel Chilean maqui berry clones by HPLC–DAD–ESI/MSn and NMR-spectroscopy. J Food Compos Anal 58:16–22CrossRefGoogle Scholar
  9. Buenos J, Ramos-Escudero F, Saez-Plaze P, Munoz A, Navas M, Asuero A (2012a) Analysis and antioxidant capacity of anthocyanin pigments. Part I: general considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem 42:102–125CrossRefGoogle Scholar
  10. Buenos J, Saez-Plaze P, Ramos-Escudero F, Jimenez A, Fett R, Asuero A (2012b) Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Crit Rev Anal Chem 42:126–151CrossRefGoogle Scholar
  11. Cespedes C, Jakupovic J, Silva M, Watson W (1990) Indole alkaloids from Aristotelia chilensis. Phytochemistry 29:1354–1356CrossRefGoogle Scholar
  12. Cespedes C, Jakupovic J, Silva M, Tsichritzis FA (1993) Quinoline alkaloid from Aristotelia chilensis. Phytochemistry 34:881–882CrossRefGoogle Scholar
  13. Cespedes C, Mancinelli P, Orellana B, Silva M (1995) In vitro culture of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. Gayana Botánica 52:77–82Google Scholar
  14. Cespedes CL, El-Hafidi M, Pavon N, Alarcon J (2008) Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem 107:820–829CrossRefGoogle Scholar
  15. Cespedes C, Valdez-Morales M, Avila J, El-Hadidfi M, Alarcon J, Paredes-Lopez O (2010) Phytochemical profile and the antioxidant activity of Chilean wild blackberry fruits, Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae). Food Chem 119:886–895CrossRefGoogle Scholar
  16. Cespedes CL, Pavon N, Dominguez M, Alarcon J, Balbontin C, Kubo I, El-Hafidi M, Avila JG (2017) The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem Toxicol 108:438–450CrossRefPubMedGoogle Scholar
  17. Debnath S (2011) Bioreactors and molecular analysis in berry crop micropropagation—a review. Can J Plant Sci 91:147–157CrossRefGoogle Scholar
  18. Delporte C (2007) Determinación de las actividades antiinflamatorias, analgésicas, antioxidantes y antimicrobianas de las hojas de Aristotelia chilensis (maqui). Identificación de los compuestos activos, Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 5:136Google Scholar
  19. Du Q, Jerz G, Winterhalter P (2004) Isolation of two anthocyanin sambubiosides from bilberry (Vaccinium myrtillus) by high-speed counter-current chromatography. J Chromatogr A 1045:59–63CrossRefPubMedGoogle Scholar
  20. Escribano-Bailon MT, Alcalde-Eon C, Muñoz O, Rivas-Gonzalo JC, Santos-Buelga C (2006) Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem Anal 17:8–14CrossRefPubMedGoogle Scholar
  21. Fredes C (2009) Antioxidantes en berries nativos chilenos. BLACPMA 8:469–478Google Scholar
  22. Fredes C, Montenegro G (2011) Maqui: el súper fruto chileno. Revista de Agronomía y Forestal 43:18–20Google Scholar
  23. Fredes C, Montenegro G, Zoffoli JP, Gómez M, Robert P (2012) Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis Molina Stuntz) during fruit development and maturation in Central Chile. Chil J Agric Res 72:582–589CrossRefGoogle Scholar
  24. Fredes C, Montenegro G, Zoffoli JP, Santander F, Robert P (2014a) Comparison of the phenolic content, total anthocyanin content and antioxidant capacity of polyphenol-rich fruits grown in Chile. Ciencia e Investigación Agraria 41:49–61CrossRefGoogle Scholar
  25. Fredes C, Yousef G, Robert P, Grace MH, Lila MA, Gómez M, Gebauer M, Montenegro G (2014b) Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J Sci Food Agric 94:2639–2648CrossRefPubMedGoogle Scholar
  26. Gajardo R (1994) La vegetación natural de Chile. Editorial Universitaria, Santiago, pp 132–133Google Scholar
  27. Genskowsky E, Puente LA, Pérez-Álvarez JA, Fernandez-Lopez J, Muñoz LA, Viuda-Martos M (2015) Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with Maqui berry (Aristotelia chilensis). LWT Food Sci Technol 64:1057–1062CrossRefGoogle Scholar
  28. Georgiev V, Bley T, Pavlov A (2012) Bioreactors for the cultivation of red beet hairy roots. In: Neelwar B (ed) Red beet biotechnology. Springer, Berlin, pp 251–281Google Scholar
  29. Girones-Vilaplana A, Mena P, García-Viguera C, Moreno DA (2012) A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. LWT Food Sci Technol 47:279–286CrossRefGoogle Scholar
  30. Girones-Vilaplana A, Villaño D, Moreno DA, García-Viguera C (2013) New isotonic drinks with antioxidant and biological capacities from berries (maqui, acaı and blackthorn) and lemon juice. Int J Food Sci Nutr 64:897–906CrossRefPubMedGoogle Scholar
  31. Girones-Vilaplana A, Baenas N, Villaño D, Speisky H, García-Viguera C, Moreno DA (2014) Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J Funct Foods 7:599–608CrossRefGoogle Scholar
  32. Gopalakrishna EM, Watson WH, Silva M, Bittner M (1978) Aristotelinine. Acta Crystallogr B Struct Sci 34:3778–3780CrossRefGoogle Scholar
  33. He K, Valcic S, Timmermann BN, Montenegro G (1997) Indole alkaloids from Aristotelia chilensis (Mol.) Stuntz. Int J Pharmacogn 35:215–217CrossRefGoogle Scholar
  34. Hoffmann AE (1991) Flora Silvestre de Chile, Zona Araucana. Fundación Claudio Gay, Santiago, p 94Google Scholar
  35. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20CrossRefPubMedPubMedCentralGoogle Scholar
  36. Insunza V, Aballay E, Macaya J (2001) In vitro nematicidal activity of aqueous plant extracts on Chilean populations of Xiphinema americanum sensu lato. Nematropica 31(1):47–54Google Scholar
  37. Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Merillon JM (eds) Handbook of natural products. Springer, Berlin, pp 1543–1580CrossRefGoogle Scholar
  38. Lila MA, Schreckinger M, Yousef G, de Mejia E (2012) Inhibition of α-glucosidase and α-amylase by Vaccinium floribundum and Aristotelia chilensis proanthocyanidins. In: Hispanic foods: chemistry and bioactive compounds. ACS Symposium Series, vol 1109, pp 71–82Google Scholar
  39. López de Dicastillo C, Rodríguez F, Guarda A, Galotto MJ (2016) Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohyd Polym 136:1052–1060CrossRefGoogle Scholar
  40. Maqui New Life (2016) http://www.maquinewlife.com/
  41. McDougall GJ, Kulkarni NN, Stewart D (2009) Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115:193–199CrossRefGoogle Scholar
  42. Miranda-Rottmann S, Aspillaga AA, Perez DD, Vasquez L, Martinez ALF, Leighton F (2002) Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J Agric Food Chem 50:7542–7547CrossRefPubMedGoogle Scholar
  43. Misle E, Garrido E, Contardo H, Gonzalez W (2011) Maqui (Aristotelia chilensis (Mol.) Stuntz)—the amazing Chilean tree: a review. J Agric Sci Technol B1:473–482Google Scholar
  44. Muñoz O, Ramos F (2016) Quantitative analysis of phytosterols in Aristotelia chilensis (Maqui) leaves using GC/MS. Int Food Res J 23:822–826Google Scholar
  45. Muñoz M, Barrera E, Meza I (1981) El Uso Medicinal y Alimenticio de Plantas Nativas y Naturalizadas en Chile. Museo Nacional de Historia Natural, Santiago, p 37Google Scholar
  46. Muñoz O, Christend P, Cretton S, Backhouse N, Torres V, Correa O, Costa E, Miranda H, Delporte C (2011) Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J Pharm Pharmacol 63:849–859CrossRefPubMedGoogle Scholar
  47. Nakamura S, Tanaka J, Imada T, Shimoda H, Tsubota K (2014) Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J Funct Foods 10:346–354CrossRefGoogle Scholar
  48. Pacheco P, Sierra J, Schmedahirschmann G, Potter CW, Jones BM, Moshref M (1993) Antiviral activity of Chilean medicinal plant-extracts. Phytother Res 7:415–418CrossRefGoogle Scholar
  49. Paz RC, Badilla VN, Suarez S, Baggio R (2014) Hobartine: a tetracyclic indole alkaloid extracted from Aristotelia chilensis (maqui). Acta Crystallogr C Struct Chem 70:1075–1078CrossRefGoogle Scholar
  50. Reyes-Farias M, Vasquez K, Ovalle-Marin A, Fuentes F, Parra C, Quitral V, Jimenez P, Garcia-Diaz DF (2016) Chilean native fruit extracts inhibit inflammation linked to the pathogenic interaction between adipocytes and macrophages. J Med Food 18:601–608CrossRefGoogle Scholar
  51. Robles P, Badilla-Vidal N, Suarez S, Baggio R (2010) Hobartine: a tetracyclic indole alkaloid extracted from Aristotelia chilensis (maqui). Acta Crystallogr C Struct Chem 70:1075–1078CrossRefGoogle Scholar
  52. Rojo LE, Ribnicky D, Logendra S, Poulev A, Rojas-Silva P, Kuhn P, Dorn R, Grace MH, Lila MA, Raskin I (2012) In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem 131:387–396CrossRefPubMedGoogle Scholar
  53. Romanucci V, D’Alonzo D, Guaragnaetal A (2016) Bioactive compounds of Aristotelia chilensis stuntz and their pharmacological effects. Curr Pharm Biotechnol 17(6):513–523CrossRefPubMedGoogle Scholar
  54. Rubilar MN, Jara C, Poo Y, Acevedo F, Gutierrez C, Sineiro J, Shene C (2011) Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): sources of antioxidant compounds and α-glucosidase/α-amylase inhibitors. J Agric Food Chem 59:1630–1637CrossRefPubMedGoogle Scholar
  55. Ruiz A, Pastene E, Vergara C, Von Baer D, Avello M, Mardones C (2016) Hydroxycinnamic acid derivatives and flavonol profile of maqui (Aristotelia chilensis) fruits. J Chil Chem Soc 61:2792–2796CrossRefGoogle Scholar
  56. Sadino MC (2015) Estrategias de cultivo e inducción in vitro de células de Aristotelia chilensis (maqui) para la obtención de antocianinas. Memoria para optar al Título de Ingeniera Civil en Biotecnología, Universidad de Chile, SantiagoGoogle Scholar
  57. Schreckinger MA, Lotton J, Lila MA, Gonzalez de Mejia E (2010) Berries from South America: A comprehensive review on chemistry, health potential, and commercialization. J Med Food 13:233–246CrossRefPubMedGoogle Scholar
  58. Schreckinger MA, Lila MA, Yousef G, de Mejia E (2012) Inhibition of α-glucosidase and α- amylase by Vaccinium floribundum and Aristotelia chilensis proanthocyanidins. ACS Symp Ser 1109:71–82CrossRefGoogle Scholar
  59. Silva M, Bittner M, Cespedes C, Jakupovic J (1996) Chemistry of Chilean Elaeocarpaceae. Aristotelia chilensis (Mol.) Stuntz. Rev Latinoam Quim 24:85–92Google Scholar
  60. Silva M, Bittner M, Cespedes C, Jakupovic J (1997) The alkaloids of the genus Aristotelia. Aristotelia chilensis (Mol.) Stuntz. Bol Soc Chil Quim 42:39–47Google Scholar
  61. Silva P, Paulo L, Barbafina A, Elisei F, Quina F, Macanita A (2012) Photoprotection and the photophysics of acylated anthocyanins. Chem Eur J 18:3736–3744CrossRefPubMedGoogle Scholar
  62. Suwalsky M, Vargas P, Avello M, Villena F, Sotomayor CP (2008) Human erythrocytes are affected in vitro by flavonoids of Aristotelia chilensis (Maqui) leaves. Int J Pharm 363:85–90CrossRefPubMedGoogle Scholar
  63. Tanaka J, Kadekaru T, Ogawa K, Hitoe S, Shimoda H, Hara H (2016) Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. J Funct Foods 27:69–83CrossRefGoogle Scholar
  64. Touati R, Santos SAO, Rocha SM, Belhamel K, Silvestre AJD (2015) The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds. Ind Crops Prod 76:936–945CrossRefGoogle Scholar
  65. Watson WH, Nagl A, Silva M, Céspedes C, Jakupovic J (1989) A new indole alkaloid from Aristotelia-Chilensis. Acta Crystallogr C Cryst Struct Commun 45:1322–1344CrossRefGoogle Scholar
  66. Wu X (2014) Antioxidant activities of anthocyanins. In: Wallace T, Giusti MM (eds) Anthocyanins in health and disease, chapter 5. CRC Press, Boca RatonGoogle Scholar
  67. Zúñiga GE, Paz R, Parada R (2015) Composición natural antioxidante y antibacteriana, elaborada a partir de extractos fenólicos de Aristotelia chilensis y procesos de obtención. Patente de Invención: 2015-03798Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Gustavo E. Zúñiga
    • 1
    Email author
  • Andrea Tapia
    • 1
  • Andrea Arenas
    • 2
  • Rodrigo A. Contreras
    • 1
  • Gustavo Zúñiga-Libano
    • 1
  1. 1.Departamento de Biología, Facultad de Química y Biología and CEDENNAUniversidad de Santiago de ChileSantiagoChile
  2. 2.PhD Program in Ciencia y Tecnología de AlimentosUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations