BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

  • Alexey Dudnik
  • A. Filipa Almeida
  • Ricardo Andrade
  • Barbara Avila
  • Pilar Bañados
  • Diane Barbay
  • Jean-Etienne Bassard
  • Mounir Benkoulouche
  • Michael Bott
  • Adelaide Braga
  • Dario Breitel
  • Rex Brennan
  • Laurent Bulteau
  • Celine Chanforan
  • Inês Costa
  • Rafael S. Costa
  • Mahdi Doostmohammadi
  • Nuno Faria
  • Chengyong Feng
  • Armando Fernandes
  • Patricia Ferreira
  • Roberto Ferro
  • Alexandre Foito
  • Sabine Freitag
  • Gonçalo Garcia
  • Paula Gaspar
  • Joana Godinho-Pereira
  • Björn Hamberger
  • András Hartmann
  • Harald Heider
  • Carolina Jardim
  • Alice Julien-Laferriere
  • Nicolai Kallscheuer
  • Wolfgang Kerbe
  • Oscar P. Kuipers
  • Shanshan Li
  • Nicola Love
  • Alberto Marchetti-Spaccamela
  • Jan Marienhagen
  • Cathie Martin
  • Arnaud Mary
  • Vincent Mazurek
  • Camillo Meinhart
  • David Méndez Sevillano
  • Regina Menezes
  • Michael Naesby
  • Morten H. H. Nørholm
  • Finn T. Okkels
  • Joana Oliveira
  • Marcel Ottens
  • Delphine Parrot
  • Lei Pei
  • Isabel Rocha
  • Rita Rosado-Ramos
  • Caroline Rousseau
  • Marie-France Sagot
  • Claudia Nunes dos Santos
  • Markus Schmidt
  • Tatiana Shelenga
  • Louise Shepherd
  • Ana Rita Silva
  • Marcelo Henriques da Silva
  • Olivier Simon
  • Steen Gustav Stahlhut
  • Ana Solopova
  • Artem Sorokin
  • Derek Stewart
  • Leen Stougie
  • Shang Su
  • Vera Thole
  • Olga Tikhonova
  • Martin Trick
  • Philippe Vain
  • André Veríssimo
  • Ana Vila-Santa
  • Susana Vinga
  • Michael Vogt
  • Liangsheng Wang
  • Lijin Wang
  • Wei Wei
  • Sandra Youssef
  • Ana Rute Neves
  • Jochen Forster
Article

Abstract

BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization of their bioactive components, identification and functional characterization of the corresponding biosynthetic pathways, and construction of Gram-positive bacterial cell factories producing phenolic compounds. Further activities included optimization of polyphenol extraction methods from bacterial cultures, scale-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project.

Keywords

Berries Bioprospecting Microbial cell factories Polyphenols Sustainable production 

Abbreviations

4CL

4-coumaryl-CoA ligase

AD

Alzheimer’s disease

ANS

Anthocyanidin synthase

ALS

Amyotrophic lateral sclerosis; anthocyanidin synthase

ANR

Anthocyanidin reductase

C3′H

p-coumaroyl shikimate/quinate 3′-hydroxylase

C4H

Cinnamate 4-hydroxylase

CBD

Convention on biological diversity

CaN

Calcineurin

CDRE

Calcineurin-dependent responsive element

CHI

Chalcone isomerase

CHR

Chalcone reductase

CHS

Chalcone synthase

CPR

Cytochrome-P450 reductase

CVs

Column volumes

CYP

Cytochromes P450

DFR

Dihydroflavonol 4-reductase

F3H

Flavanone 3-hydroxylase

F3′H

Flavonoid 3′-hydroxylase

F3′5′H

Flavonoid 3′-5′-hydroxylase

FLS

Flavonol synthase

FNS

Flavone synthase

FP7

European Commission’s the Seventh Framework programme

GFP

Green fluorescent protein

GRAS

Generally regarded as safe

HCT

Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase

HD

Huntington’s disease

HPLC

High-performance liquid chromatography

LAR

Leucoanthocyanidin reductase

LC-MS

Liquid-chromatography mass-spectrometry

NDs

Neurodegenerative diseases

NFAT

Nuclear Factor of Activated T-cells

NFκB

Nuclear Factor κB

NP-ABS

The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization

OMT

O-methyltransferase

PAL

Phenylalanine ammonia-lyase

PCA

Principal component analysis

PD

Parkinson’s disease

PLS

Partial least squares

RNA-seq

RNA sequencing technology

STS

Stilbene synthase

SVR

Support vector regression

TAL

Tyrosine ammonia-lyase

UFGT

Flavonoid 3-O-glucosyltransferase

Notes

Acknowledgements

The authors would like to thank the European Union’s Seventh Framework Programme (BacHBerry, Project No. FP7-613793, and FP7-PEOPLE-2013-COFUND, Project No. FP7-609405) for the financial support. AD, RF, MHHN, PG, SGS, and JF would also like to acknowledge the Novo Nordisk Foundation. We express our gratitude to Dr. Martha Cyert (Stanford School of Medicine, EUA), Dr. Hitoshi Shimoi (National Research Institute of Brewing, Japan) and Dr. Yoshio Araki (Graduate School of Biosphere Science, Hiroshima University, Japan) for providing the yeast strain YAA5. We also thank Dr. Ian Macraedie, RMIT University, Australia) for providing the plasmid p416_GPDpr-GFP-A42.

Supplementary material

11101_2017_9532_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 kb)
11101_2017_9532_MOESM2_ESM.docx (30 kb)
Supplementary material 2 (DOCX 29 kb)

References

  1. Andrade R, Wannagat M, Klein CC et al (2016) Enumeration of minimal stoichiometric precursor sets in metabolic networks. Algorithms Mol Biol 11:25. doi: 10.1186/s13015-016-0087-3 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aranaz I, Acosta N, Mengíbar MN et al (2016) InFiQuS: making the best of leftovers. In: de María PD (ed) Industrial biorenewables: a practical viewpoint. Wiley, Hoboken, pp 363–364Google Scholar
  3. Bak S, Olsen CE, Halkier BA, Møller BL (2000) Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant Physiol 123:1437–1448. doi: 10.1104/pp.123.4.1437 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640. doi: 10.1016/j.copbio.2011.11.012 PubMedCrossRefGoogle Scholar
  5. Becker J, Armstrong G, Vandermerwe M et al (2003) Metabolic engineering of for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85. doi: 10.1016/S1567-1356(03)00157-0 PubMedCrossRefGoogle Scholar
  6. Beekwilder J, Wolswinkel R, Jonker H et al (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672. doi: 10.1128/AEM.00609-06 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bergdahl B, Sonnenschein N, Machado D et al (2015) Genome-scale models. In: Villadsen J (ed) Fundamental bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 143–182CrossRefGoogle Scholar
  8. Bhan N, Xu P, Khalidi O, Koffas MAG (2013) Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework. Chem Eng Sci 103:109–114. doi: 10.1016/j.ces.2012.10.009 CrossRefGoogle Scholar
  9. Bharadwaj P, Martins R, Macreadie I (2010) Yeast as a model for studying Alzheimer’s disease. FEMS Yeast Res 10:961–969. doi: 10.1111/j.1567-1364.2010.00658.x PubMedCrossRefGoogle Scholar
  10. Blomstedt CK, Gleadow RM, O’Donnell N et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66. doi: 10.1111/j.1467-7652.2011.00646.x PubMedCrossRefGoogle Scholar
  11. Bodvard K, Jörhov A, Blomberg A et al (2013) The yeast transcription factor Crz1 is activated by light in a Ca2+/calcineurin-dependent and PKA-independent manner. PLoS ONE 8:e53404. doi: 10.1371/journal.pone.0053404 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186. doi: 10.1104/pp.15.01667 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657. doi: 10.1002/bit.10803 PubMedCrossRefGoogle Scholar
  14. Burkovski A (ed) (2008) Corynebacteria: genomics and molecular biology. Caister Academic Press, PooleGoogle Scholar
  15. Caldas J, Vinga S, Nordmann A et al (2014) Global meta-analysis of transcriptomics studies. PLoS ONE 9:e89318. doi: 10.1371/journal.pone.0089318 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Camont L, Cottart C-H, Rhayem Y et al (2009) Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal Chim Acta 634:121–128. doi: 10.1016/j.aca.2008.12.003 PubMedCrossRefGoogle Scholar
  17. Cao W, Ma W, Zhang B et al (2016) Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. J Ind Microbiol Biotechnol 43:557–566. doi: 10.1007/s10295-015-1725-3 PubMedCrossRefGoogle Scholar
  18. Carvalho E, Franceschi P, Feller A et al (2013) A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiol Biochem PPB 72:79–86. doi: 10.1016/j.plaphy.2013.04.001 PubMedCrossRefGoogle Scholar
  19. Catalgol B, Batirel S, Taga Y, Ozer NK (2012) Resveratrol: French paradox revisited. Front Pharmacol 3:141. doi: 10.3389/fphar.2012.00141 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chaovanalikit A, Thompson MM, Wrolstad RE (2004) Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J Agric Food Chem 52:848–852. doi: 10.1021/JF030509O PubMedCrossRefGoogle Scholar
  21. Chen X, Zhou L, Tian K et al (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223. doi: 10.1016/j.biotechadv.2013.02.009 PubMedCrossRefGoogle Scholar
  22. Choi O, Wu C-Z, Kang SY et al (2011) Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol 38:1657–1665. doi: 10.1007/s10295-011-0954-3 PubMedCrossRefGoogle Scholar
  23. Costa RS, Veríssimo A, Vinga S et al (2014) Ki MoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems. BMC Syst Biol 8:85. doi: 10.1186/s12918-014-0085-3 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Costa RS, Hartmann A, Vinga S (2016) Kinetic modeling of cell metabolism for microbial production. J Biotechnol 219:126–141. doi: 10.1016/j.jbiotec.2015.12.023 PubMedCrossRefGoogle Scholar
  25. Cox M, Rydberg J (2004) Introduction to solvent extraction. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Solvent extraction principles and practice, 2nd edn. Marcel Decker Inc, New YorkGoogle Scholar
  26. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830:3670–3695. doi: 10.1016/j.bbagen.2013.02.008 CrossRefGoogle Scholar
  27. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226. doi: 10.1007/s10295-011-1038-0 PubMedCrossRefGoogle Scholar
  28. Duarte K, Rocha-Santos TAP, Freitas AC, Duarte AC (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. TrAC Trends Anal Chem 34:97–110. doi: 10.1016/j.trac.2011.10.014 CrossRefGoogle Scholar
  29. Dumont FJ (2000) FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem 7:731–748PubMedCrossRefGoogle Scholar
  30. Duwat P, Sourice S, Cesselin B et al (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516. doi: 10.1128/JB.183.15.4509-4516.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dvora H, Koffas MAG (2013) Microbial production of flavonoids and terpenoids. In: McNeil B, Archer D, Giavasis I, Harvey L (eds) Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publishing, Oxford, pp 234–261CrossRefGoogle Scholar
  32. Eggeling L, Bott M (eds) (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca RatonGoogle Scholar
  33. European Parlament (2014) Regulation (EU) no 511/2014 of the European parliament and of the council of 16 April 2014 on compliance measures for users from the Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization in the union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0511&from=EN. Accessed 07 Sept 2017
  34. Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222. doi: 10.3389/fpls.2012.00222 PubMedPubMedCentralGoogle Scholar
  35. Fernandes A, Vinga S, Kern A et al (2016) Improving protein expression prediction using extra features and ensemble averaging. PLoS ONE 11:e0150369. doi: 10.1371/journal.pone.0150369 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Figueira I, Menezes R, Macedo D, et al. (2017) Polyphenols beyond barriers: a glimpse into the brain. Curr Neuropharmacol. 15:562–594. doi: 10.2174/1570159X14666161026151545 PubMedCrossRefGoogle Scholar
  37. Fredes C, Yousef GG, Robert P et al (2014) Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J Sci Food Agric 94:2639–2648. doi: 10.1002/jsfa.6602 PubMedCrossRefGoogle Scholar
  38. Frelet-Barrand A, Boutigny S, Moyet L et al (2010) Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic arabidopsis membrane proteins. PLoS ONE 5:e8746. doi: 10.1371/journal.pone.0008746 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Funakoshi-Tago M, Nakamura K, Tago K et al (2011) Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int Immunopharmacol 11:1150–1159. doi: 10.1016/j.intimp.2011.03.012 PubMedCrossRefGoogle Scholar
  40. Garcia G, Santos CND, Menezes R (2016) High-throughput yeast-based reporter assay to identify compounds with anti-inflammatory potential. Methods Mol Biol 1449:441–452. doi: 10.1007/978-1-4939-3756-1_29 PubMedCrossRefGoogle Scholar
  41. Gaspar P, Carvalho AL, Vinga S et al (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788. doi: 10.1016/j.biotechadv.2013.03.011 PubMedCrossRefGoogle Scholar
  42. Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53:322–331. doi: 10.1002/mnfr.200800182 PubMedCrossRefGoogle Scholar
  43. Giusti MM, Wrolstad RE (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14:217–225. doi: 10.1016/S1369-703X(02)00221-8 CrossRefGoogle Scholar
  44. Goldberg E (1997) Handbook of downstream processing. Springer, LondonGoogle Scholar
  45. Goszcz K, Deakin SJ, Duthie GG et al (2015) Antioxidants in cardiovascular therapy: panacea or false hope? Front Cardiovasc Med 2:29. doi: 10.3389/fcvm.2015.00029 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Grand View Research Inc. (2016) Polyphenols market analysis by product (grape seed, green tea, apple), by application (functional food, functional beverages, dietary supplements) and segment forecasts to 2024. http://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis. Accessed 07 Sept 2017
  47. Häkkinen SH, Kärenlampi SO, Heinonen IM et al (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279. doi: 10.1021/JF9811065 PubMedCrossRefGoogle Scholar
  48. Halvorsen BL, Carlsen MH, Phillips KM et al (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84:95–135PubMedGoogle Scholar
  49. Hartmann U, Sagasser M, Mehrtens F et al (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171. doi: 10.1007/s11103-004-6910-0 PubMedCrossRefGoogle Scholar
  50. Hartmann A, Lemos JM, Costa RS et al (2015a) Identification of switched ARX models via convex optimization and expectation maximization. J Process Control 28:9–16. doi: 10.1016/j.jprocont.2015.02.003 CrossRefGoogle Scholar
  51. Hartmann A, Lemos JM, Vinga S (2015b) Modeling multiple experiments using regularized optimization: a case study on bacterial glucose utilization dynamics. Comput Biol Med 63:301–309. doi: 10.1016/j.compbiomed.2014.08.027 PubMedCrossRefGoogle Scholar
  52. Hartmann A, Neves AR, Lemos JM, Vinga S (2016) Identification and automatic segmentation of multiphasic cell growth using a linear hybrid model. Math Biosci 279:83–89. doi: 10.1016/j.mbs.2016.06.013 PubMedCrossRefGoogle Scholar
  53. Heldt H-W, Piechulla B (2011) Plant biochemistry, 4th edn. Elsevier, LondonGoogle Scholar
  54. Hellström JK, Törrönen AR, Mattila PH (2009) Proanthocyanidins in common food products of plant origin. J Agric Food Chem 57:7899–7906. doi: 10.1021/jf901434d PubMedCrossRefGoogle Scholar
  55. Hernández I, Molenaar D, Beekwilder J et al (2007) Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol 73:1544–1552. doi: 10.1128/AEM.01870-06 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Herrmann K, Nagel CW (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347. doi: 10.1080/10408398909527504 PubMedCrossRefGoogle Scholar
  57. Hujanen M, Linko S, Linko Y-Y, Leisola M (2001) Optimisation of media and cultivation conditions for L (+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol 56:126–130. doi: 10.1007/s002530000501 PubMedCrossRefGoogle Scholar
  58. Jain N, Ramawat KG (2013) Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Merillon J-M (eds) Natural products. Springer, Berlin, pp 2559–2580CrossRefGoogle Scholar
  59. Jash SK, Mondal S (2014) Bioactive flavonoid fisetin—a molecule of pharmacological interest. Signpost Open Access J Org Biomol Chem 2:89–128Google Scholar
  60. Jeandet P, Bessis R, Gautheron B (1991) The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in different developmental stages. Am J Enol Vitic 42:41–46Google Scholar
  61. Jendresen CB, Stahlhut SG, Li M et al (2015) Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81:4458–4476. doi: 10.1128/AEM.00405-15 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jojima T, Inui M, Yukawa H (2013) Biorefinery applications of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum: biology and biotechnology. Springer, Berlin, pp 149–172CrossRefGoogle Scholar
  63. Jones JA, Vernacchio VR, Sinkoe AL et al (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55–63. doi: 10.1016/j.ymben.2016.01.006 PubMedCrossRefGoogle Scholar
  64. Josuttis M, Verrall S, Stewart D et al (2013) Genetic and environmental effects on tannin composition in strawberry (Fragaria × ananassa) cultivars grown in different European locations. J Agric Food Chem 61:790–800. doi: 10.1021/jf303725g PubMedCrossRefGoogle Scholar
  65. Ju S, Tardiff DF, Han H et al (2011) A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol 9:e1001052. doi: 10.1371/journal.pbio.1001052 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Julien-Laferrière A, Bulteau L, Parrot D et al (2016) A combinatorial algorithm for microbial consortia synthetic design. Sci Rep 6:29182. doi: 10.1038/srep29182 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kallscheuer N, Vogt M, Kappelmann J et al (2016a) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881. doi: 10.1007/s00253-015-7165-1 PubMedCrossRefGoogle Scholar
  68. Kallscheuer N, Vogt M, Marienhagen J (2016b) A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth Biol. doi: 10.1021/acssynbio.6b00291 PubMedGoogle Scholar
  69. Kallscheuer N, Vogt M, Stenzel A et al (2016c) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55. doi: 10.1016/j.ymben.2016.06.003 PubMedCrossRefGoogle Scholar
  70. Kallscheuer N, Vogt M, Bott M, Marienhagen J (2017) Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin. J Biotechnol. doi: 10.1016/j.jbiotec.2017.01.006 PubMedGoogle Scholar
  71. Kårlund A, Moor U, Sandell M, Karjalainen R (2014) The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. Processes 2:596–624. doi: 10.3390/pr2030596 CrossRefGoogle Scholar
  72. Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA (2013) Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Food Chem Toxicol 61:112–120. doi: 10.1016/j.fct.2013.03.038 PubMedCrossRefGoogle Scholar
  73. Katz M, Durhuus T, Smits HP, Förster J (2011) Patent: Production of metabolites, no. WO2011147818 (A2). https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2011147818A2&KC=A2&FT=D. Accessed 07 Sept 2017
  74. Kim HJ, Chang EJ, Cho SH et al (2002) Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem 66:1990–1993. doi: 10.1271/bbb.66.1990 PubMedCrossRefGoogle Scholar
  75. Koesnandar A, Nishio N, Nagai S (1990) Stimulation by cysteine on growth of Clostridium thermoaceticum in minimal medium. Appl Microbiol Biotechnol 32:711–714. doi: 10.1007/BF00164746 CrossRefGoogle Scholar
  76. Kortmann M, Kuhl V, Klaffl S, Bott M (2015) A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol 8:253–265. doi: 10.1111/1751-7915.12236 PubMedCrossRefGoogle Scholar
  77. Kritzer JA, Hamamichi S, McCaffery JM et al (2009) Rapid selection of cyclic peptides that reduce α-synuclein toxicity in yeast and animal models. Nat Chem Biol 5:655–663. doi: 10.1038/nchembio.193 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97:1589–1594. doi: 10.1073/PNAS.97.4.1589 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Krömer JO, Sorgenfrei O, Klopprogge K et al (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784. doi: 10.1128/JB.186.6.1769-1784.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kuipers OP, Beerthuyzen MM, Siezen RJ et al (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291. doi: 10.1111/j.1432-1033.1993.tb18143.x PubMedCrossRefGoogle Scholar
  81. Kuipers OP, de Ruyter PGG, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21. doi: 10.1016/S0168-1656(98)00100-X CrossRefGoogle Scholar
  82. Kula M, Majdan M, Głód D, Krauze-Baranowska M (2016) Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. J Food Compos Anal 52:74–82. doi: 10.1016/j.jfca.2016.08.003 CrossRefGoogle Scholar
  83. Kunji ERS, Chan KW, Slotboom DJ et al (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol 16:546–551. doi: 10.1016/j.copbio.2005.08.006 PubMedCrossRefGoogle Scholar
  84. Kwiatkowski TJ, Bosco DA, LeClerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. doi: 10.1126/science.1166066 PubMedCrossRefGoogle Scholar
  85. Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) (2011) Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, Boca RatonGoogle Scholar
  86. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160. doi: 10.1016/j.foodres.2011.04.027 CrossRefGoogle Scholar
  87. Lenihan JR, Tsuruta H, Diola D et al (2008) Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol Prog 24:1026–1032. doi: 10.1002/btpr.27 PubMedCrossRefGoogle Scholar
  88. Li H, Qiu T, Huang G et al (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85. doi: 10.1186/1475-2859-9-85 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li X, Sun H, Pei J et al (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54–61. doi: 10.1016/j.gene.2012.09.021 PubMedCrossRefGoogle Scholar
  90. Linares DM, Kok J, Poolman B (2010) Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 192:5806–5812. doi: 10.1128/JB.00533-10 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu Y-B, Long M-X, Yin Y-J et al (2013) Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. Arch Microbiol 195:419–429. doi: 10.1007/s00203-013-0889-3 PubMedCrossRefGoogle Scholar
  92. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690. doi: 10.1126/science.1217412 PubMedCrossRefGoogle Scholar
  93. Luo J, Nishiyama Y, Fuell C et al (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50:678–695. doi: 10.1111/j.1365-313X.2007.03079.x PubMedCrossRefGoogle Scholar
  94. Määttä KR, Kamal-Eldin A, Törrönen R (2001) Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.). Antioxid Redox Signal 3:981–993. doi: 10.1089/152308601317203521 PubMedCrossRefGoogle Scholar
  95. Määttä KR, Kamal-Eldin A, Törrönen AR (2003) High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J Agric Food Chem 51:6736–6744. doi: 10.1021/JF0347517 PubMedCrossRefGoogle Scholar
  96. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282. doi: 10.1139/O07-018 PubMedCrossRefGoogle Scholar
  97. Machado D, Herrgård MJ, Rocha I (2015) Modeling the contribution of allosteric regulation for flux control in the central carbon metabolism of E. coli. Front Bioeng Biotechnol 3:154. doi: 10.3389/fbioe.2015.00154 PubMedPubMedCentralGoogle Scholar
  98. Maeda S, Gasson MJ (1986) Cloning, expression and location of the Streptococcus lactis gene for phospho-β-d-galactosidase. Microbiology 132:331–340. doi: 10.1099/00221287-132-2-331 CrossRefGoogle Scholar
  99. Maher P (2009) Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr 4:297–307. doi: 10.1007/s12263-009-0142-5 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maher P, Dargusch R, Ehren JL et al (2011) Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE 6:e21226. doi: 10.1371/journal.pone.0021226 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Manganaris GA, Goulas V, Vicente AR, Terry LA (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94:825–833. doi: 10.1002/jsfa.6432 PubMedCrossRefGoogle Scholar
  102. Marhuenda J, Alemán MD, Gironés-Vilaplana A et al (2016) Phenolic composition, antioxidant activity, and in vitro availability of four different berries. J Chem 2016:1–7. doi: 10.1155/2016/5194901 CrossRefGoogle Scholar
  103. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178. doi: 10.1016/j.jbiotec.2012.06.001 PubMedCrossRefGoogle Scholar
  104. Mazur SP, Sønsteby A, Nes A et al (2014) Effects of post-flowering environmental variation along an altitudinal gradient on chemical composition of “Glen Ample” Red Raspberry (Rubus idaeus L.). Eur J Hortic Sci 79:267–277Google Scholar
  105. McDougall G, Martinussen I, Stewart D (2008) Towards fruitful metabolomics: high throughput analyses of polyphenol composition in berries using direct infusion mass spectrometry. J Chromatogr B 871:362–369. doi: 10.1016/j.jchromb.2008.06.032 CrossRefGoogle Scholar
  106. Menezes R, Tenreiro S, Macedo D et al (2015) From the baker to the bedside: yeast models of Parkinson’s disease. Microb Cell 2:262–279. doi: 10.15698/mic2015.08.219 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Miladinović B, Kostić M, Šavikin K et al (2014) Chemical profile and antioxidative and antimicrobial activity of juices and extracts of 4 black currants varieties (Ribes nigrum L.). J Food Sci 79:C301–C309. doi: 10.1111/1750-3841.12364 PubMedCrossRefGoogle Scholar
  108. Milivojević J, Maksimović V, Nikolić M et al (2011) Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual 34:1–9. doi: 10.1111/j.1745-4557.2010.00360.x CrossRefGoogle Scholar
  109. Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3:325–338. doi: 10.1002/biot.200700217 PubMedCrossRefGoogle Scholar
  110. Milreu PV, Klein CC, Cottret L et al (2014) Telling metabolic stories to explore metabolomics data: a case study on the yeast response to cadmium exposure. Bioinformatics 30:61–70. doi: 10.1093/bioinformatics/btt597 PubMedCrossRefGoogle Scholar
  111. Morgera E, Tsioumani E, Buck M (2014) Unraveling the Nagoya protocol. Brill, LeidenCrossRefGoogle Scholar
  112. Moulton GG (2014) Fed-batch fermentation. Woodhead Publishing, CambridgeGoogle Scholar
  113. Moyer RA, Hummer KE, Finn CE et al (2001) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, Rubus, and Ribes. J Agric Food Chem 50:519–525. doi: 10.1021/JF011062R CrossRefGoogle Scholar
  114. Neves AR, Pool WA, Kok J et al (2005) Overview on sugar metabolism and its control in Lactococcus lactis—the input from in vivo NMR. FEMS Microbiol Rev 29:531–554. doi: 10.1016/j.fmrre.2005.04.005 PubMedGoogle Scholar
  115. NMRO (UK) (2015) The Nagoya protocol on access and benefit sharing of genetic resources: compliance and guidance (ABS). https://www.gov.uk/guidance/abs. Accessed 07 Sept 2017
  116. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Ann Rev Neurosci 34:185–204. doi: 10.1146/annurev-neuro-061010-113613 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39. doi: 10.1186/1471-2180-5-39 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775. doi: 10.1126/science.1090439 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Palmieri N, Forleo MB, Salimei E (2017) Environmental impacts of a dairy cheese chain including whey feeding: an Italian case study. J Clean Prod 140:881–889. doi: 10.1016/j.jclepro.2016.06.185 CrossRefGoogle Scholar
  120. Pan M-G, Xiong Y, Chen F (2013) NFAT gene family in inflammation and cancer. Curr Mol Med 13:543–554PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662. doi: 10.1016/j.biotechadv.2016.02.012 PubMedCrossRefGoogle Scholar
  122. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez TT (2010) Berries: improving human health and healthy aging, and promoting quality life—a review. Plant Foods Human Nutr 65:299–308. doi: 10.1007/s11130-010-0177-1 CrossRefGoogle Scholar
  123. Pátek M, Nešvera J (2013) Promoters and plasmid vectors of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum: biology and biotechnology, 23rd edn. Springer, Berlin, pp 51–88CrossRefGoogle Scholar
  124. Patil K, Rocha I, Förster J et al (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308. doi: 10.1186/1471-2105-6-308 CrossRefGoogle Scholar
  125. Pauli GF, Chen S-N, Friesen JB et al (2012) Analysis and purification of bioactive natural products: the AnaPurNa study. J Nat Prod 75:1243–1255. doi: 10.1021/np300066q PubMedPubMedCentralCrossRefGoogle Scholar
  126. Pedersen MB, Gaudu P, Lechardeur D et al (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Ann Rev Food Sci Technol 3:37–58. doi: 10.1146/annurev-food-022811-101255 CrossRefGoogle Scholar
  127. Pei L, Schmidt M (2016) Sustainable assessment on using bacterial platform to produce high-added-value products from berries through metabolic engineering. In: Singh S (ed) Systems biology application in synthetic biology. Springer, New Delhi, pp 71–78CrossRefGoogle Scholar
  128. Pontes DS, de Azevedo MSP, Chatel J-M et al (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175. doi: 10.1016/j.pep.2011.06.005 PubMedCrossRefGoogle Scholar
  129. Prescott TAK, Ariño J, Kite GC, Simmonds MSJ (2012) Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts. J Ethnopharmacol 140:293–297. doi: 10.1016/j.jep.2012.01.020 PubMedCrossRefGoogle Scholar
  130. Prince K, Smith M (2004) Protein purification protocols. In: Cutler P (ed) Protein purification protocols. Humana Press, Totowa, pp 463–480Google Scholar
  131. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. doi: 10.1002/anie.201000044 CrossRefGoogle Scholar
  132. Rani MU, Appaiah A (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann Microbiol 61:781–787. doi: 10.1007/s13213-011-0196-7 CrossRefGoogle Scholar
  133. Rasmussen SE, Frederiksen H, Struntze Krogholm K, Poulsen L (2005) Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res 49:159–174. doi: 10.1002/mnfr.200400082 PubMedCrossRefGoogle Scholar
  134. Ratnam BVV, Narasimha Rao M, Damodar Rao M et al (2003) Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J Microbiol Biotechnol 19:523–526. doi: 10.1023/A:1025174731814 CrossRefGoogle Scholar
  135. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526. doi: 10.1016/0140-6736(92)91277-F PubMedCrossRefGoogle Scholar
  136. Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi: 10.1038/nature04640 PubMedCrossRefGoogle Scholar
  137. Ruiz A, Hermosín-Gutiérrez I, Mardones C et al (2010) Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J Agric Food Chem 58:6081–6089. doi: 10.1021/jf100173x PubMedCrossRefGoogle Scholar
  138. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521PubMedGoogle Scholar
  139. Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400. doi: 10.1016/j.ymben.2011.02.002 PubMedCrossRefGoogle Scholar
  140. SCBD (2011) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf. Accessed 07 Sept 2017
  141. Secretary of State (UK) (2015) Nagoya protocol (compliance) regulations 2015. http://www.legislation.gov.uk/uksi/2015/821/pdfs/uksi_20150821_en.pdf. Accessed 07 Sept 2017
  142. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112–15117. doi: 10.1073/pnas.232349399 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Shen X, Liu S (2005) Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Sci China Ser C Life Sci 48:241–249. doi: 10.1007/BF03183617 Google Scholar
  144. Shen X-H, Zhou N-Y, Liu S-J (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89. doi: 10.1007/s00253-012-4139-4 PubMedCrossRefGoogle Scholar
  145. Shinfuku Y, Sorpitiporn N, Sono M et al (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43. doi: 10.1186/1475-2859-8-43 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668. doi: 10.1073/pnas.0509567103 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42:327–338. doi: 10.1007/s10295-014-1576-3 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Song AA, Abdullah JO, Abdullah MP et al (2014) Engineering the lactococcal mevalonate pathway for increased sesquiterpene production. FEMS Microbiol Lett 355:177–184. doi: 10.1111/1574-6968.12469 PubMedCrossRefGoogle Scholar
  149. Stahlhut SG, Siedler S, Malla S et al (2015) Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng 31:84–93. doi: 10.1016/j.ymben.2015.07.002 PubMedCrossRefGoogle Scholar
  150. Stanford NJ, Millard P, Swainston N (2015) RobOKoD: microbial strain design for (over)production of target compounds. Front Cell Dev Biol 3:17. doi: 10.3389/fcell.2015.00017 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Stavang JA, Freitag S, Foito A et al (2015) Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Sci Hortic (Amst) 195:216–225. doi: 10.1016/j.scienta.2015.08.045 CrossRefGoogle Scholar
  152. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456. doi: 10.1016/S1369-5266(00)00199-0 PubMedCrossRefGoogle Scholar
  153. Su LJ, Auluck PK, Outeiro TF et al (2010) Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis Model Mech 3:194–208. doi: 10.1242/dmm.004267 PubMedCrossRefGoogle Scholar
  154. Suh Y, Afaq F, Johnson JJ, Mukhtar H (2008) A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-B-signaling pathways. Carcinogenesis 30:300–307. doi: 10.1093/carcin/bgn269 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tardiff DF, Tucci ML, Caldwell KA et al (2012) Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms. J Biol Chem 287:4107–4120. doi: 10.1074/jbc.M111.308668 PubMedCrossRefGoogle Scholar
  156. Tayarani-Najaran Z, Mousavi SH, Tajfard F et al (2013) Cytotoxic and apoptogenic properties of three isolated diterpenoids from Salvia chorassanica through bioassay-guided fractionation. Food Chem Toxicol 57:346–351. doi: 10.1016/j.fct.2013.03.037 PubMedCrossRefGoogle Scholar
  157. Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26:536–543. doi: 10.1093/bioinformatics/btp704 PubMedCrossRefGoogle Scholar
  158. Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235. doi: 10.1111/j.1365-313X.2005.02371.x PubMedCrossRefGoogle Scholar
  159. Törrönen R (2009) Sources and health effects of dietary ellagitannins. In: Quideau S (ed) Chemistry and biology of ellagitannins: an underestimated class of bioactive plant polyphenols. World Scientific Publishing, Singapore, pp 298–319CrossRefGoogle Scholar
  160. Vagiri M, Ekholm A, Öberg E et al (2013) Phenols and ascorbic acid in black currants (Ribes nigrum L.): variation due to genotype, location, and year. J Agric Food Chem 61:9298–9306. doi: 10.1021/jf402891s PubMedCrossRefGoogle Scholar
  161. van Summeren-Wesenhagen PV, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl Environ Microbiol 81:840–849. doi: 10.1128/AEM.02966-14 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. doi: 10.1126/science.1165942 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Vazquez-Albacete D, Cavaleiro AM, Christensen U et al (2016) An expression tag toolbox for microbial production of membrane bound plant cytochromes P450. Biotechnol Bioeng. doi: 10.1002/bit.26203 PubMedGoogle Scholar
  164. Vera J, González-Alcón C, Marín-Sanguino A, Torres N (2010) Optimization of biochemical systems through mathematical programming: methods and applications. Comput Oper Res 37:1427–1438. doi: 10.1016/j.cor.2009.02.021 CrossRefGoogle Scholar
  165. Veríssimo A, Bassard J-E, Julien-Laferrière A, et al. (2017) MassBlast: A workflow to accelerate RNA-seq and DNA database analysis. bioRxiv 131953. doi: 10.1101/131953
  166. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi: 10.1093/mp/ssp106 PubMedCrossRefGoogle Scholar
  167. Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695. doi: 10.1038/10904 PubMedCrossRefGoogle Scholar
  168. Wang Y, Bhuiya MW, Zhou R, Yu O (2015) Pterostilbene production by microorganisms expressing resveratrol O-methyltransferase. Ann Microbiol 65:817–826. doi: 10.1007/s13213-014-0922-z CrossRefGoogle Scholar
  169. Wang J, Guleria S, Koffas MA, Yan Y (2016a) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104. doi: 10.1016/j.copbio.2015.11.003 PubMedCrossRefGoogle Scholar
  170. Wang Y, Zhu J, Meng X et al (2016b) Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Food Chem 197:522–529. doi: 10.1016/j.foodchem.2015.11.006 PubMedCrossRefGoogle Scholar
  171. Watts KR, Ratnam J, Ang K-H et al (2010) Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorganic Med Chem 18:2566–2574. doi: 10.1016/j.bmc.2010.02.034 CrossRefGoogle Scholar
  172. Weckwerth W (2003) Metabolomics in systems biology. Ann Rev Plant Biol 54:669–689. doi: 10.1146/annurev.arplant.54.031902.135014 CrossRefGoogle Scholar
  173. Weller MG (2012) A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 12:9181–9209. doi: 10.3390/s120709181 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wen Z, Minton NP, Zhang Y et al (2016) Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng. doi: 10.1016/j.ymben.2016.10.013 PubMedGoogle Scholar
  175. Xu P, Ranganathan S, Fowler ZL et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587. doi: 10.1016/j.ymben.2011.06.008 PubMedCrossRefGoogle Scholar
  176. Xu P, Wang W, Li L et al (2013) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol. doi: 10.1021/cb400623m PubMedCentralGoogle Scholar
  177. Yang X, Summerhurst DK, Koval SF et al (2001) Isolation of an antimicrobial compound from Impatiens balsamina L. using bioassay-guided fractionation. Phytother Res 15:676–680. doi: 10.1002/ptr.906 PubMedCrossRefGoogle Scholar
  178. Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583. doi: 10.1007/s00253-010-2970-z PubMedCrossRefGoogle Scholar
  179. Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124. doi: 10.1021/JF040411P PubMedCrossRefGoogle Scholar
  180. Zelle RM, de Hulster E, Kloezen W et al (2010) Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76:744–750. doi: 10.1128/AEM.02396-09 PubMedCrossRefGoogle Scholar
  181. Zhang H, Matsuda H, Yamashita C et al (2009) Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound. Eur J Pharmacol 606:255–261. doi: 10.1016/j.ejphar.2009.01.005 PubMedCrossRefGoogle Scholar
  182. Zheng J, Ding C, Wang L et al (2011) Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai–Tibet Plateau. Food Chem 126:859–865. doi: 10.1016/j.foodchem.2010.11.052 CrossRefGoogle Scholar
  183. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical optimization applications in metabolic networks. Metab Eng 14:672–686. doi: 10.1016/j.ymben.2012.09.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Alexey Dudnik
    • 1
  • A. Filipa Almeida
    • 15
    • 20
  • Ricardo Andrade
    • 2
  • Barbara Avila
    • 3
  • Pilar Bañados
    • 3
  • Diane Barbay
    • 4
  • Jean-Etienne Bassard
    • 5
  • Mounir Benkoulouche
    • 4
  • Michael Bott
    • 6
  • Adelaide Braga
    • 7
    • 21
  • Dario Breitel
    • 12
  • Rex Brennan
    • 10
  • Laurent Bulteau
    • 2
  • Celine Chanforan
    • 8
  • Inês Costa
    • 15
    • 20
  • Rafael S. Costa
    • 9
  • Mahdi Doostmohammadi
    • 9
    • 22
  • Nuno Faria
    • 7
    • 21
  • Chengyong Feng
    • 17
  • Armando Fernandes
    • 9
  • Patricia Ferreira
    • 7
    • 21
  • Roberto Ferro
    • 1
  • Alexandre Foito
    • 10
  • Sabine Freitag
    • 10
  • Gonçalo Garcia
    • 15
    • 20
  • Paula Gaspar
    • 1
  • Joana Godinho-Pereira
    • 15
    • 20
  • Björn Hamberger
    • 5
  • András Hartmann
    • 9
  • Harald Heider
    • 4
  • Carolina Jardim
    • 15
    • 20
  • Alice Julien-Laferriere
    • 2
  • Nicolai Kallscheuer
    • 6
  • Wolfgang Kerbe
    • 13
  • Oscar P. Kuipers
    • 11
  • Shanshan Li
    • 17
  • Nicola Love
    • 12
  • Alberto Marchetti-Spaccamela
    • 2
  • Jan Marienhagen
    • 6
  • Cathie Martin
    • 12
  • Arnaud Mary
    • 2
  • Vincent Mazurek
    • 8
  • Camillo Meinhart
    • 13
  • David Méndez Sevillano
    • 14
  • Regina Menezes
    • 15
    • 20
  • Michael Naesby
    • 4
  • Morten H. H. Nørholm
    • 1
  • Finn T. Okkels
    • 8
  • Joana Oliveira
    • 7
    • 21
  • Marcel Ottens
    • 14
  • Delphine Parrot
    • 2
  • Lei Pei
    • 13
  • Isabel Rocha
    • 7
    • 21
  • Rita Rosado-Ramos
    • 15
    • 20
  • Caroline Rousseau
    • 4
  • Marie-France Sagot
    • 2
  • Claudia Nunes dos Santos
    • 15
    • 20
  • Markus Schmidt
    • 13
  • Tatiana Shelenga
    • 16
  • Louise Shepherd
    • 10
  • Ana Rita Silva
    • 7
    • 21
  • Marcelo Henriques da Silva
    • 14
  • Olivier Simon
    • 8
  • Steen Gustav Stahlhut
    • 1
  • Ana Solopova
    • 11
  • Artem Sorokin
    • 16
  • Derek Stewart
    • 10
    • 19
  • Leen Stougie
    • 22
    • 23
  • Shang Su
    • 17
  • Vera Thole
    • 12
  • Olga Tikhonova
    • 16
  • Martin Trick
    • 12
  • Philippe Vain
    • 12
  • André Veríssimo
    • 9
  • Ana Vila-Santa
    • 9
  • Susana Vinga
    • 9
  • Michael Vogt
    • 6
  • Liangsheng Wang
    • 17
  • Lijin Wang
    • 17
  • Wei Wei
    • 17
  • Sandra Youssef
    • 13
  • Ana Rute Neves
    • 18
  • Jochen Forster
    • 1
  1. 1.The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
  2. 2.Institut National de Recherche en Informatique et AutomatiqueVilleurbanne CedexFrance
  3. 3.Facultad De Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileMaculChile
  4. 4.EvolvaReinachSwitzerland
  5. 5.Department of Plant and Environmental ScienceUniversity of CopenhagenFrederiksbergDenmark
  6. 6.Forschungszentrum Jülich GmbH, Institut für Bio- und GeowissenschaftenIBG-1: BiotechnologieJülichGermany
  7. 7.Biotempo, Avepark – Edif. Spinpark, Zona Industrial da GandraBarcoGuimarãesPortugal
  8. 8.Chr. Hansen Natural Colors A/SHørsholmDenmark
  9. 9.IDMEC, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
  10. 10.The James Hutton InstituteDundeeScotland, UK
  11. 11.Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular GeneticsUniversity of Groningen, LinnaeusborgGroningenThe Netherlands
  12. 12.John Innes Centre, Norwich Research ParkNorwichUK
  13. 13.Biofaction KGViennaAustria
  14. 14.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  15. 15.iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
  16. 16.Fruit Crops Genetic Resources DepartmentN. I. Vavilov Research Institute of Plant IndustrySt. PetersburgRussia
  17. 17.Institute of BotanyThe Chinese Academy of SciencesBeijingChina
  18. 18.Chr. Hansen Holding A/SHørsholmDenmark
  19. 19.Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical SciencesHeriot Watt UniversityEdinburghScotland, UK
  20. 20.Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
  21. 21.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  22. 22.School of MathematicsUniversity of EdinburghEdinburghScotland, UK
  23. 23.Centrum Wiskunde & InformaticaAmsterdamNetherlands

Personalised recommendations