Advertisement

Phytochemistry Reviews

, Volume 16, Issue 2, pp 235–270 | Cite as

Naturally occurring furanoditerpenoids: distribution, chemistry and their pharmacological activities

  • Han Bao
  • Qingwen Zhang
  • Yang Ye
  • Ligen LinEmail author
Article

Abstract

Furanoditerpenoids are a special group of diterpenoids composing of one or more furan rings, which are rarely found in nature. This review aims to survey the various naturally occurring furanoditerpenoids and their pharmacological activities. A fairly large number of furanoditerpenoids have been reported from the families Euphorbiaceae, Fabaceae and Lamiaceae, and a few ones from the families Asteraceae, Codoniaceae, Dioscoreaceae, Fossombroniaceae, Jamesoniellaceae, Meliaceae, Menispermaceae, Olacaceae, Psathyrellaceae, Sapindaceae and Scapaniaceae. Their distribution correlates strongly with the taxonomic divisions. Most of these plants are widely used in traditional medicines, and furanoditerpenoids have therefore been disclosed with a wide range of bioactivities including anti-cancer, anti-inflammation and anti-microorganism. To structure this review, the furanoditerpenoids were classified into seven types, including clerodane-type (Type I), labdane-type (Type II), cassane-type (Type III), abietane-type (Type IV), spongian-type (Type V), prenylbisabolane-type (Type VI) and miscellaneous type (Type VII). On the basis of 170 references, this review covers the distribution, phytochemistry, synthesis and pharmacological activities of furanoditerpenoids, describing 444 compounds. The information provided in this review might shed light on further research and development of furanoditerpenoids as potential therapeutic agents.

Keywords

Furanoditerpenoids Distribution Phytochemistry Biological properties 

Abbreviations

CD

Circular dichroism

D2R

Dopamine-D2-receptor

DIBAL

Diisobutylaluminium hydride

DMAP

4-Dimethylaminopyridine

DMF

Dimethylformamide

DPPH

2,2-Diphenyl-1-picrylhydrazyl

KOR

κ-opioid receptor

LAH

Lithium aluminium hydride

LPS

Lipopolysaccharide

MIC

Minimum inhibitory concentration

NMR

Nuclear magnetic resonance

NO

Nitric oxide

PCC

Pyridinium chlorochromate

PPHG

Postprandial hyperglycemia

TBAF

Tetra-n-butylammonium fluoride

t-BuLi

Tert-butyllithium

TFA

Trifluoroacetic acid

THF

Tetrahydrofuran

Notes

Acknowledgments

Financial support by Science and Technology Development Fund, Macao S.A.R (FDCT 120/2013/A3) and the Research Fund of University of Macau (MYRG2014-00020-ICMS-QRCM and MYRG2015-00153-ICMS-QRCM) are gratefully.

References

  1. Afiyatullov SS, Kalinovsky AI, Antonov AS et al (2007) Isolation and structures of erylosides from the Carribean sponge Erylus goffrilleri. J Nat Prod 70:1871–1877PubMedCrossRefGoogle Scholar
  2. Agbo E, Bashir S, Igoli N et al (2015) Caesaldekarin M, A new diterpene from Caesalpinia bonduc. J Nat Prod Res Updat 1:1–6Google Scholar
  3. Akaberi M, Mehri S, Iranshahi M (2015) Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia 100:118–132PubMedCrossRefGoogle Scholar
  4. Akimanya A, Midiwo JO, Matasyoh J et al (2015) Two polymethoxylated flavonoids with antioxidant activities and a rearranged clerodane diterpenoid from the leaf exudates of Microglossa pyrifolia. Phytochem Lett 11:183–187CrossRefGoogle Scholar
  5. Al-Yahya MA, El-Feraly FS, Dunbar DC et al (2002) Neo-clerodane diterpenoids from Teucrium oliverianum and structure revision of teucrolin E. Phytochemistry 59:409–414PubMedCrossRefGoogle Scholar
  6. Awale S, Linn TZ, Tezuka Y et al (2006) Constituents of Caesalpinia crista from Indonesia. Chem Pharm Bull 54:213–218PubMedCrossRefGoogle Scholar
  7. Bandurraga MM, Fenical W, Donovan SF et al (1982) Pseudopterolide, an irregular diterpenoid with unusual cytotoxic properties from the Caribbean Sea whip Pseudopterogorgia acerosa (Pallas) (Gorgonacea). J Am Chem Soc 104:6463–6465CrossRefGoogle Scholar
  8. Banskota AH, Attamimi F, Usia T et al (2003) Novel norcassane-type diterpene from the seed kernels of Caesalpinia crista. Tetrahedron Lett 44:6879–6882CrossRefGoogle Scholar
  9. Bautista E, Maldonado E, Ortega A (2012) Neo-clerodane diterpenes from Salvia herbacea. J Nat Prod 75:951–958PubMedCrossRefGoogle Scholar
  10. Bautista E, Toscano A, Calzada F et al (2013a) Hydroxyclerodanes from Salvia shannoni. J Nat Prod 76:1970–1975PubMedCrossRefGoogle Scholar
  11. Bautista E, Toscano RA, Ortega A (2013b) Microphyllandiolide, a new diterpene with an unprecedented skeleton from Salvia microphylla. Org Lett 15:3210–3213PubMedCrossRefGoogle Scholar
  12. Bautista E, Toscano RA, Ortega A (2014) 5,10-seco-neo-Clerodanes and neo-clerodanes from Salvia microphylla. J Nat Prod 77:1088–1092PubMedCrossRefGoogle Scholar
  13. Bedir E, Tasdemir D, Çalis I et al (1999) Neo-clerodane diterpenoids from Teucrium polium. Phytochemistry 51:921–925CrossRefGoogle Scholar
  14. Bedir E, Manyam R, Khan IA (2003) Neo-clerodane diterpenoids and phenylethanoid glycosides from Teucrium chamaedrys L. Phytochemistry 63:977–983PubMedCrossRefGoogle Scholar
  15. Bisio A, Fontana N, Romussi G et al (1999) Clerodane diterpenoids from Salvia blepharophylla. Phytochemistry 52:1535–1540CrossRefGoogle Scholar
  16. Bruno M, Fazio C, Piozzi F et al (1995) Neo-clerodane diterpenoids from Teucrium racemosum. Phytochemistry 40:505–507CrossRefGoogle Scholar
  17. Bruno M, Buscemi S, Rosselli S et al (2006) Photochemical reactivity of 6α-hydroxy-7-keto neoclerodane diterpenoids. J Photochem Photobiol A Chem 180:54–58CrossRefGoogle Scholar
  18. Carroll AR, Lamb J, Moni R et al (2008) Spongian diterpenes with thyrotropin releasing hormone receptor 2 binding affinity from Spongia sp. J Nat Prod 71:884–886PubMedCrossRefGoogle Scholar
  19. Chaturvedula VP, Gao Z, Thomas SH et al (2004) New norditerpenoids and a diterpenoid from a sponge that inhibit the lyase activity of DNA polymerase β. Tetrahedron 60:9991–9995CrossRefGoogle Scholar
  20. Cheenpracha S, Srisuwan R, Karalai C et al (2005) New diterpenoids from stems and roots of Caesalpinia crista. Tetrahedron 61:8656–8662CrossRefGoogle Scholar
  21. Cheng YY, Li SF, Zhang Y et al (2012) Cleidbrevoids A-C, new clerodane diterpenoids from Cleidion brevipetiolatum. Fitoterapia 83:1100–1104PubMedCrossRefGoogle Scholar
  22. Choudhary MI, Ismail M, Shaari K et al (2010) cis-Clerodane-yype furanoditerpenoids from Tinospora crispa. J Nat Prod 73:541–547PubMedCrossRefGoogle Scholar
  23. Choudhary MI, Mohammad MY, Musharraf SG et al (2013) Biotransformation of clerodane diterpenoids by Rhizopus stolonifer and antibacterial activity of resulting metabolites. Phytochemistry 90:56–61CrossRefGoogle Scholar
  24. Citoglu G, Tanker M, Sever B et al (1998) Antibacterial activities of diterpenoids isolated from Ballota saxatilis subsp. saxatilis. Planta Med 64:484–485PubMedCrossRefGoogle Scholar
  25. Das B, Ravinder Reddy M, Ramu R et al (2005) Clerodane diterpenoids from Pulicaria wightiana. Phytochemistry 66:633–638PubMedCrossRefGoogle Scholar
  26. Das B, Srinivas Y, Sudhakar C et al (2010) New diterpenoids from Caesalpinia species and their cytotoxic activity. Bioorg Med Chem Lett 20:2847–2850PubMedCrossRefGoogle Scholar
  27. Dickson RA, Houghton PJ, Hylands PJ (2007) Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry 68:1436–1441PubMedCrossRefGoogle Scholar
  28. Dong L, Zhang XP, Liu MS et al (2013) Two new ent-3,4-seco-labdane diterpenoids from Callicarpa nudiflora. J Asian Nat Prod Res 15:30–34PubMedCrossRefGoogle Scholar
  29. Dong R, Yuan J, Wu S et al (2015) Anti-inflammation furanoditerpenoids from Caesalpinia minax Hance. Phytochemistry 117:325–331PubMedCrossRefGoogle Scholar
  30. Eguren L, Perales A, Fayos J et al (1982) New neoclerodane diterpenoid containing an oxetane ring isolated from Teucrium chamaedrys-X-ray structure determination. J Org Chem 47:4157–4160CrossRefGoogle Scholar
  31. Endale A, Bisrat D, Animut A et al (2013) In vivo antimalarial activity of a labdane diterpenoid from the leaves of Otostegia integrifolia Benth. Phytother Res 27:1805–1809PubMedCrossRefGoogle Scholar
  32. Esquivel B, Cardenas J, Toscano A et al (1985) Structure of salvigenolide, a novel diterpenoid with a rearranged neo-clerodane skeleton from Salvia fulgens. Tetrahedron 41:3213–3217CrossRefGoogle Scholar
  33. Fan TP, Min ZD, Iinuma M et al (2000) Rearranged abietane diterpenoids from Clerodendrum mandarinorum. J Asian Nat Prod Res 2:237–243PubMedCrossRefGoogle Scholar
  34. Farooq U, Khan A, Ahmad VU et al (2007) Two new rare-class tetracyclic diterpenoids from Otostegia limbata. Chem Pharm Bull 55:471–473PubMedCrossRefGoogle Scholar
  35. Feld H, Hertewich UM, Zapp J et al (2005) Sacculatane diterpenoids from axenic cultures of the liverwort Fossombronia wondraczekii. Phytochemistry 66:1094–1099PubMedCrossRefGoogle Scholar
  36. Fontana G, Savona G, Rodríguez B et al (2008) Synthetic studies of neoclerodane diterpenoids from Salvia splendens and evaluation of opioid receptor affinity. Tetrahedron 64:10041–10048PubMedPubMedCentralCrossRefGoogle Scholar
  37. Frija LM, Frade RF, Afonso CA (2011) Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem Rev 111:4418–4452PubMedCrossRefGoogle Scholar
  38. Fukuma Y, Sakai E, Nishishita K et al (2015) Cafestol has a weaker inhibitory effect on osteoclastogenesis than kahweol and promotes osteoblast differentiation. BioFactors 41:222–231PubMedCrossRefGoogle Scholar
  39. Fumimoto R, Sakai E, Yamaguchi Y et al (2012) The coffee diterpene kahweol prevents osteoclastogenesis via impairment of NFATc1 expression and blocking of Erk phosphorylation. J Pharmacol Sci 118:479–486PubMedCrossRefGoogle Scholar
  40. Galceran CB, Sertie JA, Lima CS et al (2011) Anti-inflammatory and analgesic effects of 6alpha,7beta-dihydroxy-vouacapan-17beta-oic acid isolated from Pterodon emarginatus Vog. fruits. Inflammopharmacol 19:139–143CrossRefGoogle Scholar
  41. Giang PM, Son PT, Matsunami K et al (2005) New labdane-type diterpenoids from Leonurus heterophyllus SW. Chem Pharm Bull 53:938–941PubMedCrossRefGoogle Scholar
  42. Gómez-Hurtado MA, Álvarez-Esquivel FE, Rodríguez-García G et al (2013) Cassane diterpenes from Caesalpinia platyloba. Phytochemistry 96:397–403PubMedCrossRefGoogle Scholar
  43. Gonzalez MA (2015) Aromatic abietane diterpenoids: their biological activity and synthesis. Nat Prod Rep 32:684–704PubMedCrossRefGoogle Scholar
  44. Gray CA, Rivett DE, Davies-Coleman MT (2003) The absolute stereochemistry of a diterpene from Ballota aucheri. Phytochemistry 63:409–413PubMedCrossRefGoogle Scholar
  45. Gross H, Wright AD, Reinscheid U et al (2009) Three new spongian diterpenes from the Fijian marine sponge Spongia sp. Nat Prod Commun 4:315–322PubMedGoogle Scholar
  46. Gu HS, Ma SG, Li YH et al (2014) Claoxylones A-I, prenylbisabolane diterpenoids with anti-Coxsackie B virus activity from the branches and leaves of Claoxylon polot. Tetrahedron 70:7476–7483CrossRefGoogle Scholar
  47. Guo DX, Zhu RX, Wang XN et al (2010) Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva. Org Lett 12:4404–4407PubMedCrossRefGoogle Scholar
  48. Guo DX, Wang XN, Zhu RX et al (2012) cis-Clerodane diterpenoids from the Chinese liverwort Scapania parva Steph. Phytochem Lett 5:535–540CrossRefGoogle Scholar
  49. Hanson JR (2013) Diterpenoids of terrestrial origin. Nat Prod Rep 30:1346–1356PubMedCrossRefGoogle Scholar
  50. Hanson JR (2015) Diterpenoids of terrestrial origin. Nat Prod Rep 32:1654–1663PubMedCrossRefGoogle Scholar
  51. Hersel U, Steck M, Seifert K (2000) A new route to 2, 7-and 7-functionalized labdanes. Eur J Org Chem 2000:1609–1615CrossRefGoogle Scholar
  52. Hikawczuk VEJ, Rossomando PC, Giordano OS et al (2002) neo-Clerodane diterpenoids from Baccharis flabellata. Phytochemistry 61:389–394CrossRefGoogle Scholar
  53. Hiruma-Lima CA, Gracioso JS, Toma W et al (2001) Gastroprotective effect of aparisthman, a diterpene isolated from Aparisthmium cordatum, on experimental gastric ulcer models in rats and mice. Phytomedicine 8:94–100PubMedCrossRefGoogle Scholar
  54. Hoberg E, Orjala J, Meier B et al (1999) Diterpenoids from the fruits of Vitex agnus-castus. Phytochemistry 52:1555–1558CrossRefGoogle Scholar
  55. Hu DP, Kawazoe K, Takaishi Y (1997) Diterpenoids from Salvia splendens. Phytochemistry 46:781–784CrossRefGoogle Scholar
  56. Huang C, Li W, Ma F et al (2012) Tinospinosides D, E, and tinospin E, further clerodane diterpenoids from Tinospora sagittata. Chem Pharm Bull 60:1324–1328PubMedCrossRefGoogle Scholar
  57. Jenett-Siems K, Köhler I, Kraft C et al (2003) Cornutins C-L, neo-clerodane-type diterpenoids from Cornutia grandifolia var. intermedia. Phytochemistry 64:797–804PubMedCrossRefGoogle Scholar
  58. Jiang HL, Wang XZ, Xiao J et al (2013) New abietane diterpenoids from the roots of Salvia przewalskii. Tetrahedron 69:6687–6692CrossRefGoogle Scholar
  59. Jogia MK, Andersen RJ, Parkanyi L et al (1989) Crotofolane diterpenoids from the African shrub Croton dichogamus Pax. J Org Chem 54:1654–1657CrossRefGoogle Scholar
  60. Kaplan ER, Naidu K, Rivett DE (1979) Diterpenoids of Leonofis species. Part III. 8b-hydroxymarrubiin from L. dysophylla Benth. J Chem Soc (C) 1656–1658Google Scholar
  61. Karioti A, Heilmann J, Skaltsa H (2005) Labdane diterpenes from Marrubium velutinum and Marrubium cylleneum. Phytochemistry 66:1060–1066PubMedCrossRefGoogle Scholar
  62. Katayama K, Shimazaki K, Tazaki H et al (2007) Parvitexins A-E, clerodane-type diterpenes isolated from the in vitro-cultured liverwort, Scapania parvitexta. Biosci Biotechnol Biochem 71:2751–2758PubMedCrossRefGoogle Scholar
  63. Kawahara N, Tamura T, Inoue M et al (2004) Diterpenoid glucosides from Salvia greggii. Phytochemistry 65:2577–2581PubMedCrossRefGoogle Scholar
  64. Kihampa C, Nkunya MH, Joseph CC et al (2009) Anti-mosquito and antimicrobial nor-halimanoids, isocoumarins and an anilinoid from Tessmannia densiflora. Phytochemistry 70:1233–1238PubMedCrossRefGoogle Scholar
  65. Kitagawa I, Simanjuntak P, Watano T et al (1994) Indonesian medicinal plants 11. Chemical structures of caesaldekarin A and caesaldekarin B, 2 new cassane-type furanoditerpenes from the roots of Caesalpinia major (Fabaceae). Chem Pharm Bull 42:1798–1802CrossRefGoogle Scholar
  66. Kittakoop P, Wanasith S, Watts P et al (2001) Potent antiviral potamogetonyde and potamogetonol, new furanoid labdane diterpenes from Potamogeton malaianus. J Nat Prod 64:385–388PubMedCrossRefGoogle Scholar
  67. Kumar S, Narwal S, Kumar V et al (2011) Alpha-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 5:19–29PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lam SH, Ruan CT, Hsieh PH et al (2012) Hypoglycemic diterpenoids from Tinospora crispa. J Nat Prod 75:153–159PubMedCrossRefGoogle Scholar
  69. Li W, Wei K, Fu HW et al (2007) Structure and absolute configuration of clerodane diterpene glycosides and a rearranged cadinane sesquiterpene glycoside from the stems of Tinospora sinensis. J Nat Prod 70:1971–1976PubMedCrossRefGoogle Scholar
  70. Li W, Huang C, Li SP et al (2012) Clerodane diterpenoids from Tinospora sagittata (Oliv.) Gagnep. Planta Med 78:82–85PubMedCrossRefGoogle Scholar
  71. Li RJ, Sun Y, Sun B et al (2014) Phytotoxic cis-clerodane diterpenoids from the Chinese liverwort Scapania stephanii. Phytochemistry 105:85–91PubMedCrossRefGoogle Scholar
  72. Lin FW, Damu AG, Wu TS (2006) Abietane diterpene alkaloids from Salvia yunnanensis. J Nat Prod 69:93–96PubMedCrossRefGoogle Scholar
  73. Liu SS, Zhu HL, Zhang SW et al (2008) Abietane diterpenoids from Clerodendrum bungei. J Nat Prod 71:755–759PubMedCrossRefGoogle Scholar
  74. Liu CP, Xu JB, Zhao JX et al (2014a) Diterpenoids from Croton laui and their cytotoxic and antimicrobial activities. J Nat Prod 77:1013–1020PubMedCrossRefGoogle Scholar
  75. Liu Q, Hu HJ, Li PF et al (2014b) Diterpenoids and phenylethanoid glycosides from the roots of Clerodendrum bungei and their inhibitory effects against angiotensin converting enzyme and α-glucosidase. Phytochemistry 103:196–202PubMedCrossRefGoogle Scholar
  76. Look SA, Burch MT, Fenical W et al (1985) Kallolide A, a new antiinflammatory diterpenoid, and related lactones from the Caribbean octocoral Pseudopterogorgia kallos (Bielschowsky). J Org Chem 50:5741–5746CrossRefGoogle Scholar
  77. Lyder DL, Peter SR, Tinto WF et al (1998) Minor cassane diterpenoids of Caesalpinia bonduc. J Nat Prod 61:1462–1465PubMedCrossRefGoogle Scholar
  78. Ma M, Jiang ZZ, Ruan JL et al (2012) The furano norclerodane diterpenoid disobulbin-D induces apoptosis in normal human liver L02 cells. Exp Toxicol Pathol 64:611–618PubMedCrossRefGoogle Scholar
  79. Ma GX, Yuan JQ, Wu HF et al (2013) Caesalpins A-H, bioactive cassane-type diterpenes from the seeds of Caesalpinia minax. J Nat Prod 76:1025–1031PubMedCrossRefGoogle Scholar
  80. Ma GX, Zhu YD, Sun ZH et al (2014) Three new cassane diterpenes from the seeds of Caesalpinia sappan. Phytochem Lett 8:141–144CrossRefGoogle Scholar
  81. Maldonado E, Ortega A (2000) Polystachynes A-E, five cis-neo-clerodane diterpenoids from Salvia polystachya. Phytochemistry 53:103–109PubMedCrossRefGoogle Scholar
  82. María C, Rodríguez B, Bruno M et al (1997) Neo-clerodane diterpenoids from Teucrium sandrasicum. Phytochemistry 45:1653–1662CrossRefGoogle Scholar
  83. Maurya R, Manhas LR, Gupta P et al (2004) Amritosides A, B, C and D: clerodane furano diterpene glucosides from Tinospora cordifolia. Phytochemistry 65:2051–2055PubMedCrossRefGoogle Scholar
  84. McKenzie JM, Green IR, Mugabo P (2006) Leonurun, a novel labdane diterpenoid from Leonotis leonurus. S Afr J Chem-S-Afr T. 59:114–116Google Scholar
  85. Mcpherson DD, Che CT, Cordell GA et al (1985) Diterpenoids from Caesalpinia pulcherrima. Phytochemistry 25:167–170CrossRefGoogle Scholar
  86. Mendelson JE, Coyle JR, Lopez JC et al (2011) Lack of effect of sublingual salvinorin A, a naturally occurring kappa opioid, in humans: a placebo-controlled trial. Psychopharmacol 214:933–939CrossRefGoogle Scholar
  87. Monti H, Tiliacos N, Faure R (1996) Two diterpenoids from copaiba oil. Phytochemistry 42:1653–1656CrossRefGoogle Scholar
  88. Mossa JS, Cassady JM, Antoun MD et al (1985) Saudin, a hypoglycemic diterpenoid with a novel 6,7-secolabdane carbon skeleton, from Cluytia richardiana. J Org Chem 50:916–918CrossRefGoogle Scholar
  89. Mossa JS, Muhammad I, AlYahya MA et al (1996) Five new modified 6,7-secolabdane diterpenoids from Cluytia richardiana. J Nat Prod 59:224–231CrossRefGoogle Scholar
  90. Muhammad I, Mossa JS, Mirza HH et al (1999) A new modified 6, 7-secolabdane diterpenoid from Clutia richardiana. Phytochemistry 50:1225–1227CrossRefGoogle Scholar
  91. Munro TA, Rizzacasa MA, Roth BL et al (2005) Studies toward the pharmacophore of Salvinorin A, a potent κ opioid receptor agonist. J Med Chem 48:345–348PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nagy G, Günther G, Máthé I et al (1999) Diterpenoids from Salvia glutinosa, S. austriaca, S. tomentosa and S. verticillata roots. Phytochemistry 52:1105–1109CrossRefGoogle Scholar
  93. Narukawa Y, Niimura A, Noguchi H et al (2014) New diterpenoids with estrogen sulfotransferase inhibitory activity from Leonurus sibiricus L. J Nat Med 68:125–131PubMedCrossRefGoogle Scholar
  94. Ngadjui BT, Abegaz BM, Keumedjio F et al (2002) Diterpenoids from the stem bark of Croton zambesicus. Phytochemistry 60:345–349PubMedCrossRefGoogle Scholar
  95. Nieto M, Gallardo O, Rossomando PC et al (1996) 8-Hydroxysalviarin and 7,8-didehydrorhyacophiline, two new diterpenes from Salvia reflexa. J Nat Prod 59:880–882CrossRefGoogle Scholar
  96. Nozawa M, Suka Y, Hoshi T et al (2008) Total synthesis of the hallucinogenic neoclerodane diterpenoid salvinorin A. Orga Lett 10:1365–1368CrossRefGoogle Scholar
  97. Ogawa K, Aoki I, Sashida Y (1992) Caesaljapin, a cassane diterpenoid from Caesalpinia decapetala var. japonica. Phytochemistry 31:2897–2898CrossRefGoogle Scholar
  98. Omosa LK, Amugune B, Ndunda B et al (2014) Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S Afr J Bot 91:58–62CrossRefGoogle Scholar
  99. Ortega A, Blount JF, Manchand PS (1982) Salvinorin, a New Trans-Neoclerodane Diterpene from Salvia Divinorum (Labiatae). J Chem Soc Perk T 1:2505–2508CrossRefGoogle Scholar
  100. Pan Z, Ning D, Wu X et al (2015) New clerodane diterpenoids from the twigs and leaves of Croton euryphyllus. Bioorg Med Chem Lett 25:1329–1332PubMedCrossRefGoogle Scholar
  101. Papanov G, Malakov P, Tomova K (1998) 19-Hydroxygaleopsin, a labdane diterpenoid from Leonurus cardiaca. Phytochemistry 47:139–141CrossRefGoogle Scholar
  102. Paquette LA, Efremov I (2001) Teubrevin G and teubrevin H: the first total syntheses of rearranged neo-clerodanes including solutions to the problems of chirality merger and furan ring assembly. J Am Chem Soc 123:4492–4501PubMedCrossRefGoogle Scholar
  103. Persianone AB, Savona G (1980) Diterpenoids from Galeopsis angustifolia. Phytochemistry 19:1805–1807CrossRefGoogle Scholar
  104. Peter SR, Tinto WF, McLean S et al (1997) Bonducellpins A-D, new cassane furanoditerpenes of Caesalpinia bonduc. J Nat Prod 60:1219–1221CrossRefGoogle Scholar
  105. Pierre TH, Kamdem WJ, Ayafor F et al (1997) Peniankerine, an 18-norclerodane diterpenoid from the stem bark of Penianthus zenkeri. Phytochemistry 46:165–167CrossRefGoogle Scholar
  106. Prabhakar Reddy P, Tiwari AK, Ranga Rao R et al (2009) New Labdane diterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes. Bioorg Med Chem Lett 19:2562–2565PubMedCrossRefGoogle Scholar
  107. Pranithanchai W, Karalai C, Ponglimanont C et al (2009) Cassane diterpenoids from the stem of Caesalpinia pulcherrima. Phytochemistry 70:300–304PubMedCrossRefGoogle Scholar
  108. Pudhom K, Sommit D (2011) Clerodane diterpenoids and a trisubstituted furan from Croton oblongifolius. Phytochem Lett 4:147–150CrossRefGoogle Scholar
  109. Puebla P, López JL, Guerrero M et al (2003) Neo-clerodane diterpenoids from Croton schiedeanus. Phytochemistry 62:551–555PubMedCrossRefGoogle Scholar
  110. Purushothaman KK, Kalyani K, Subramanian K et al (1981) Zeta-Caesalpin, a new caesalpin from Caesalpinia bonducella. Indian J Chem B 20:625–626Google Scholar
  111. Qin HL, Li ZH (2004) Clerodane-type diterpenoids from Nannoglottis ravida. Phytochemistry 65:2533–2537PubMedCrossRefGoogle Scholar
  112. Qin J, Li HM, Gao LH et al (2014) New labdane diterpenoids from Leonurus japonicus and their anti-inflammatory activity. Phytochem Lett 10:313–317CrossRefGoogle Scholar
  113. Rakotobe L, Mambu L, Deville A et al (2010) Clerodane and 19-norclerodane diterpenoids from the tubers of Dioscorea antaly. Phytochemistry 71:1007–1013PubMedCrossRefGoogle Scholar
  114. Reddy PP, Rao RR, Shashidhar J et al (2009) Phytochemical investigation of labdane diterpenes from the rhizomes of Hedychium spicatum and their cytotoxic activity. Bioorg Med Chem Lett 19:6078–6081PubMedCrossRefGoogle Scholar
  115. Roach JS, McLean S, Reynolds WF et al (2003) Cassane diterpenoids of Caesalpinia pulcherrima. J Nat Prod 66:1378–1381PubMedCrossRefGoogle Scholar
  116. Rodriguez B, Savona G, Piozzi F (1979) Two new unusual diterpenoids from Ballota hispanica. J Org Chem 44:2219–2221CrossRefGoogle Scholar
  117. Rodriguez B, Delatorre MC, Jimeno ML et al (1995) Rearranged Neoclerodane Diterpenoids from Teucrium brevifolium and Their Biogenetic Pathway. Tetrahedron 51:837–848CrossRefGoogle Scholar
  118. Rodríguez B, María C, Bruno M et al (1996) Neo-clerodane diterpenoids from three species of Teucrium. Phytochemistry 43:435–438CrossRefGoogle Scholar
  119. Rodriguezhahn L, Esquivel B, Sanchez AA et al (1988) Puberulin and isopuberulin, benzonorcaradiene and benzocycloheptatriene diterpenoids of clerodanic origin from Salvia puberula. J Org Chem 53:3933–3936CrossRefGoogle Scholar
  120. Rodriguezhahn L, Oreilly R, Esquivel B et al (1990) Tilifodiolide, tetraline-type diterpenoid of clerodanic origin from Salvia tiliaefolia. J Org Chem 55:3522–3525CrossRefGoogle Scholar
  121. Roengsumran S, Limsuwankesorn S, Ngamrojnavanich N et al (2000) Cassane diterpenoid from Caesalpinia major. Phytochemistry 53:841–844PubMedCrossRefGoogle Scholar
  122. Romero-Gonzalez RR, Avila-Nunez JL, Aubert L et al (2006) Labdane diterpenes from Leonurus japonicus leaves. Phytochemistry 67:965–970PubMedCrossRefGoogle Scholar
  123. Roth BL, Baner K, Westkaemper R et al (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA 99:11934–11939PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rustaiyan A, Mossleminkupaii MH, Papastergiou F et al (1995) Persianone, a dimeric diterpene from Ballota aucheri. Phytochemistry 40:875–879CrossRefGoogle Scholar
  125. Sanchez AA, Esquivel B, Ramamoorthy T et al (1995) Clerodane diterpenoids from Salvia urolepis. Phytochemistry 38:171–174CrossRefGoogle Scholar
  126. Sato A, Kurabayashi M, Nagahori H et al (1970) Chettaphanin-I, a novel furanoditerpenoid. Tetrahedron Lett 11:1095–1098CrossRefGoogle Scholar
  127. Sato A, Kurabayashi M, Ogiso A et al (1971) Chettaphanin-II, a novel furanoditerpenoid. Tetrahedron Lett 12:839–842CrossRefGoogle Scholar
  128. Savona G, Piozzi F, Hanson JR et al (1976) Structure of ballotinone, a diterpenoid from Ballota nigm. J Chem Soc Perkin Trans 1:1607–1609CrossRefGoogle Scholar
  129. Savona G, Piozzi F, Hanson JR et al (1977) The structure of ballotenol, a new diterpenoid from Ballota nigra. J Chem Soc Perkin Trans 1:497–499CrossRefGoogle Scholar
  130. Savona G, Passannanti S, Paternostro MP et al (1978) Two new diterpenoids from Teucrium fruticans. J Chem Soc Perkin Trans 1:356–359CrossRefGoogle Scholar
  131. Savona G, Paternostro MP, Piozzi F et al (1979) Splendidin, a new trans-clerodane from Salvia splendens. J Chem Soc Perkin Trans 1:533–534CrossRefGoogle Scholar
  132. Siebert DJ (1994) Salvia divinorum and salvinorin A: new pharmacologic findings. J Ethnopharmacol 43:53–56PubMedCrossRefGoogle Scholar
  133. Simpson BS, Claudie DJ, Smith NM et al (2012) Rare, seven-membered cyclic ether labdane diterpenoid from Dodonaea polyandra. Phytochemistry 84:141–146PubMedCrossRefGoogle Scholar
  134. Sivasubramanian A, Gadepalli Narasimha KK, Rathnasamy R et al (2013) A new antifeedant clerodane diterpenoid from Tinospora cordifolia. Nat Prod Res 27:1431–1436PubMedCrossRefGoogle Scholar
  135. Spindola HM, de Carvalho JE, Ruiz ALTG et al (2009) Furanoditerpenes from Pterodon pubescens Benth with selective in vitro anticancer activity for prostate cell line. J Braz Chem Soc 20:569–571CrossRefGoogle Scholar
  136. Tane P, Akam MT, Tsopmo A et al (2004) Two labdane diterpenoids and a seco-tetranortriterpenoid from Turreanthus africanus. Phytochemistry 65:3083–3087PubMedCrossRefGoogle Scholar
  137. Tang W, Kubo M, Harada K et al (2009) Novel NGF-potentiating diterpenoids from a Brazilian medicinal plant, Ptychopetalum olacoides. Bioorg Med Chem Lett 19:882–886PubMedCrossRefGoogle Scholar
  138. Tazaki H, Nabeta K, Becker H (1998) Clerodane-type diterpenoids from axenic cultures of the liverwort Jamesoniella autumnalis. Phytochemistry 48:681–685CrossRefGoogle Scholar
  139. Teponno RB, Tapondjou AL, Gatsing D et al (2006) Bafoudiosbulbins A, and B, two anti-salmonellal clerodane diterpenoids from Dioscorea bulbifera L. var sativa. Phytochemistry 67:1957–1963PubMedCrossRefGoogle Scholar
  140. Teponno RB, Tapondjou AL, Abou-Mansour E et al (2008) Bafoudiosbulbins F and G, further clerodane diterpenoids from Dioscorea bulbifera L. var sativa and revised structure of Bafoudiosbulbin B. Phytochemistry 69:2374–2379CrossRefGoogle Scholar
  141. Topcu G, Eris C, Ulubelen A et al (1995) New rearranged neoclerodane diterpenoids from Teucrium alyssifolium. Tetrahedron 51:11793–11800CrossRefGoogle Scholar
  142. Valdivia C, Kettering M, Anke H et al (2005) Diterpenoids from Coprinus heptemerus. Tetrahedron 61:9527–9532CrossRefGoogle Scholar
  143. Vasas A, Hohmann J (2014) Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev 114:8579–8612PubMedCrossRefGoogle Scholar
  144. Vigor C, Fabre N, Fourasté I et al (2001) Three clerodane diterpenoids from Croton eluteria Bennett. Phytochemistry 57:1209–1212PubMedCrossRefGoogle Scholar
  145. Wang GC, Zhang H, Liu HB et al (2013a) Laevinoids A and B: two diterpenoids with an unprecedented backbone from Croton laevigatus. Org Lett 15:4880–4883PubMedCrossRefGoogle Scholar
  146. Wang WX, Xiong J, Tang Y et al (2013b) Rearranged abietane diterpenoids from the roots of Clerodendrum trichotomum and their cytotoxicities against human tumor cells. Phytochemistry 89:89–95PubMedCrossRefGoogle Scholar
  147. Waridel P, Wolfender JL, Lachavanne JB et al (2003) ent-Labdane diterpenes from the aquatic plant P otamogeton pectinatus. Phytochemistry 64:1309–1317PubMedCrossRefGoogle Scholar
  148. Wazir V, Maurya R, Kapil RS (1995) Cordioside, a clerodane furano diterpene glucoside from Tinospora cordifolia. Phytochemistry 38:447–449CrossRefGoogle Scholar
  149. Wilson SR, Neubert LA, Huffman JC (1976) The chemistry of the Euphorbiaceae. A new diterpene from Croton californicus. J Am Chem Soc 98:3669–3674PubMedCrossRefGoogle Scholar
  150. Wu H, Fronczek FR, Ferreira D et al (2011) Labdane diterpenoids from Leonurus sibiricus. J Nat Prod 74:831–836PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wu H, Li J, Fronczek FR et al (2013) Labdane diterpenoids from Leonotis leonurus. Phytochemistry 91:229–235PubMedCrossRefGoogle Scholar
  152. Wu JM, Chen G, Xu XT et al (2014a) Seven new cassane furanoditerpenes from the seeds of Caesalpinia minax. Fitoterapia 92:168–176PubMedCrossRefGoogle Scholar
  153. Wu L, Luo J, Zhang YM et al (2014b) Cassane-type diterpenoids from the seed kernels of Caesalpinia bonduc. Fitoterapia 93:201–208PubMedCrossRefGoogle Scholar
  154. Xu G, Peng LY, Niu XM et al (2004) Novel diterpenoids from Salvia dugesii. Helve Chim Acta 87:949–955CrossRefGoogle Scholar
  155. Xu YJ, Zhang J, Tang CP et al (2013) A new diterpenoid from the seeds of Caesalpinia sappan Linn. Rec Nat Prod 7:124–128Google Scholar
  156. Yang ZY, Yin YH, Hu LH (2009) Five New Cassane-Type Diterpenes from Caesalpinia crista. Helv Chim Acta 92:121–126CrossRefGoogle Scholar
  157. Yodsaoue O, Cheenpracha S, Karalai C et al (2008) Phanginin A-K, diterpenoids from the seeds of Caesalpinia sappan Linn. Phytochemistry 69:1242–1249PubMedCrossRefGoogle Scholar
  158. Yodsaoue O, Karalai C, Ponglimanont C et al (2010) Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry 71:1756–1764PubMedCrossRefGoogle Scholar
  159. Yodsaoue O, Karalai C, Ponglimanont C et al (2011) Pulcherrins D-R, potential anti-inflammatory diterpenoids from the roots of Caesalpinia pulcherrima. Tetrahedron 67:6838–6846CrossRefGoogle Scholar
  160. Zanin JLB, De Carvalho BA, Salles Martineli P et al (2012) The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics. Molecules 17:7887–7902PubMedCrossRefGoogle Scholar
  161. Zhang JY, Wu FH, Qu W et al (2012) Two new cassane diterpenoids from the seeds of Caesalpinia sappan Linn. Chin J Nat Med 10:218–221CrossRefGoogle Scholar
  162. Zhang J, Abdel-Mageed WM, Liu M et al (2013a) Caesanines A-D, new cassane diterpenes with unprecedented N bridge from Caesalpinia sappan. Org Lett 15:4726–4729PubMedCrossRefGoogle Scholar
  163. Zhang L, Dong L, Huang J et al (2013b) 3, 4-seco-Labdane diterpenoids from the leaves of Callicarpa nudiflora and their inhibitory effects on nitric oxide production. Fitoterapia 89:218–223PubMedCrossRefGoogle Scholar
  164. Zhang ZX, Li HH, Qi FM et al (2014) A new halimane diterpenoid from Croton crassifolius. B Korean Chem Soc 35:1556–1558CrossRefGoogle Scholar
  165. Zhao Q, Qing C, Hao XJ et al (2008) Cytotoxicity of labdane-type diterpenoids from Hedychium forrestii. Chem Pharm Bull 56:210–212PubMedCrossRefGoogle Scholar
  166. Zhao P, Chen HQ, Wang H et al (2013) Four new cassane diterpenes from the seeds of Caesalpinia minax. Phytochem Lett 6:606–609CrossRefGoogle Scholar
  167. Zheng Y, Zhang SW, Cong HJ et al (2013) Caesalminaxins A-L, cassane diterpenoids from the seeds of Caesalpinia minax. J Nat Prod 76:2210–2218PubMedCrossRefGoogle Scholar
  168. Zheng Y, Zhang SW, Xuan LJ (2015) Trinorcassane and cassane diterpenoids from the seeds of Caesalpinia minax. Fitoterapia 102:177–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau, Avenida da UniversidadeTaipaChina
  2. 2.State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina

Personalised recommendations