Advertisement

Phytochemistry Reviews

, Volume 15, Issue 4, pp 651–662 | Cite as

Synergism between antibiotics and plant extracts or essential oils with efflux pump inhibitory activity in coping with multidrug-resistant staphylococci

  • Mária Mikulášová
  • Romana Chovanová
  • Štefánia Vaverková
Article

Abstract

The alarming growth of the number of antibiotic resistant bacteria and in the same time limited possibilities to develop new antimicrobial compounds, lead to an urgent need to keep the sensitivity of bacteria against currently used antibiotics. Bacterial efflux pumps are an important mechanism of antibiotic resistance as the bacteria use efflux pumps for the extrusion of different types of antibiotics and chemicals. The knowledge about inhibitors of efflux pumps from natural sources suggests that this mechanism may be a good target for new drugs based on synergistic interactions of antibiotics with plant extracts, essential oils, or their constituents with efflux pump inhibitory activity. This review summarizes the current knowledge of staphylococcal efflux pumps and potential strategies to overcome them. Natural inhibitors of efflux pumps and their synergistic interactions with antibiotics are summarized.

Keywords

Efflux pump inhibitor Antibiotic resistance Plant extract Essential oil 

Abbreviations

EO

Essential oil

EP

Efflux pump

EPI

Efflux pump inhibitor

EtBr

Ethidium bromide

MDR

Multidrug resistance

5′-MHC

5′-Methoxyhydno-carpin

Notes

Acknowledgments

The work was supported by a Grant VEGA 1/0287/15. Authors are grateful to Dr. Milen Georgiev for the invitation to submit this review.

References

  1. Abulrob AN, Suller MTE, Gumbleton M et al (2004) Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains. Phytochemistry 65:3021–3027CrossRefPubMedGoogle Scholar
  2. Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475CrossRefPubMedGoogle Scholar
  3. Bame J, Graf T, Junio H et al (2013) Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med 79:327–329CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barreto HM, Fontinele FC, de Oliveira AP et al (2014) Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. BioMed Res Int. doi: 10.1155/2014/305610
  5. Barreto HM, Fontinele FC, de Oliveira AP et al (2015) Enhancement of the antibiotic activity of aminoglycosides by extracts from Anadenanthera colubrine (Vell.) Brenan var. cebil against multi-drug resistant bacteria. Nat Prod Res 9:1–4Google Scholar
  6. Bazzaz-Fazly SB, Memariani Z, Khashiarmanesh Z et al (2010) Effect of galbanic acid, a sesquiterpene coumarin from Ferula szowitsiana, as an inhibitor of efflux mechanism in resistant clinical isolates of Staphylococcus aureus. Braz J Microbiol 41:574–580CrossRefGoogle Scholar
  7. Belofsky G, Percivil D, Lewis K et al (2004) Phenolic Metabolites of Dalea versicolor that enhance antibiotic activity against multi-drug resistant bacteria. J Nat Prod 67:481–484CrossRefPubMedGoogle Scholar
  8. Braga LC, Leite AA, Xavier KG et al (2005) Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol 51:541–547CrossRefPubMedGoogle Scholar
  9. Budzyńska A, Wieckowska-Szakiel M, Sadowska B et al (2011) Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 60:35–41CrossRefPubMedGoogle Scholar
  10. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  11. Cabral V, Luo X, Junqueira E et al (2015) Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine 22(4):469–476CrossRefPubMedGoogle Scholar
  12. Chan BC, Ip M, Lau CB et al (2011) Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol 137:767–773CrossRefPubMedGoogle Scholar
  13. Chan BC, Han XQ, Lui SL et al (2015) Combating against methicillin-resistant Staphylococcus aureus—two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. J Pharm Pharmacol 67:107–116CrossRefPubMedGoogle Scholar
  14. Chitemerere TA, Mukanganyama S (2011) In vitro antibacterial activity of selected medicinal plants from Zimbabwe. African J Plant Sci Biotech 5:1–7Google Scholar
  15. Chovanová R, Mezovská J, Vaverková Š, Mikulášová M (2015) The inhibition of the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett Appl Microbiol 61:58–62CrossRefPubMedGoogle Scholar
  16. Cirino IC, Menezes-Silva SM, Silva HT et al (2014) The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 60:290–293CrossRefPubMedGoogle Scholar
  17. Coast J, Smith R, Miller M (1996) Superbugs: should antimicrobial resistance be included as a cost in economic evaluation? Health Econ 5:217–226CrossRefPubMedGoogle Scholar
  18. Corona-Castañeda B, Chérigo L, Fragoso-Serrano M et al (2013) Modulators of antibiotic activity from Ipomoea murucoides. Phytochemistry 95:277–283CrossRefPubMedGoogle Scholar
  19. Costa SS, Falcão C, Viveiros M, Machado D, Martins M, Melo-Cristino J et al (2011) Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol 11:e241CrossRefGoogle Scholar
  20. Costa SS, Viveiros M, Amaral L, Couto I (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7:59–71CrossRefPubMedPubMedCentralGoogle Scholar
  21. Costa SS, Viveiros M, Rosato AE et al (2015) Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC Microbiol 15:232. doi: 10.1186/s12866-015-0572-8 CrossRefPubMedCentralGoogle Scholar
  22. Coutinho HDM, Falcão-Silva VS, Siqueira-Júnior JP et al (2010) Use of aromatherapy associated with antibiotictherapy: modulation of the antibiotic activity by the essential oil of Zanthoxylum articulatum using gaseous contact. J Essent Oil Bear Pl 13:670–675CrossRefGoogle Scholar
  23. de Barros JC, da Conceicao LM, Neto GNJ et al (2009) Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT Food Sci Technol 42:1139–1143CrossRefGoogle Scholar
  24. de Oliveira SMS, Falcão-Silva VS, Siqueira-Junior JP et al (2011) Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica) peel. Rev Bras Farmacogn 21:190–193CrossRefGoogle Scholar
  25. Dickson RA, Houghton PJ, Hylands PJ et al (2006) Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill. Securinega virosa Roxb. & Wlld. and Microglossa pyrifolia Lam. Phytother Res 20:41–45CrossRefPubMedGoogle Scholar
  26. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847CrossRefPubMedGoogle Scholar
  27. Ettefagh KA, Burns JT, Junio HA et al (2011) Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med 77:835–840CrossRefPubMedGoogle Scholar
  28. Falcão-Silva V, Silva DA, Souza Mde F et al (2009) Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytother Res 10:1367–1370CrossRefGoogle Scholar
  29. Fernandez L, Hancock R (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25:661–681CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fiamegos Y, Kastritis PL, Exarchou V et al (2011) Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria. PLoS ONE. doi: 10.1371/journal.pone.0018127
  31. Fujita M, Shiota S, Kuroda T et al (2005) Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 49:391–396CrossRefPubMedGoogle Scholar
  32. Gibbons S, Udo EE (2000) The effect of reserpine, a modulator of multi-drug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother Res 14:139–140CrossRefPubMedGoogle Scholar
  33. Gibbons S, Oluwatuyi M, Veitch NC et al (2003) Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry 62:83–87CrossRefPubMedGoogle Scholar
  34. Gibbons S, Oluwatuyi M, Kaatz GW (2004) A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 48:1968–1973CrossRefGoogle Scholar
  35. Handzlik J, Matys A, Kiec-Kononowicz K (2013) Recent advances in multi-drug-resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics 2:28–45CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hernández A, Sánchez MB, Martínez JL (2011) Quinolone resistance: much more than predicted. Front Microb. doi: 10.3389/fmicb.2011.00022 Google Scholar
  37. Holler JG, Christensen SB, Slotved HC et al (2012) Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J Antimicrob Chemother 67:1138–1144CrossRefPubMedGoogle Scholar
  38. Hooper DC (1999) Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2:38–55CrossRefPubMedGoogle Scholar
  39. Inoue Y, Shiraishi A, Hada T et al (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331PubMedGoogle Scholar
  40. Kalia N, Mahajan P, Mehra R et al (2012) Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J Antimicrob Chemother 67:2401–2408CrossRefPubMedGoogle Scholar
  41. Khan IA, Mirza ZH, Kumar A et al (2006) Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 50:810–812CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kon KV, Rai MK (2012) Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev Anti Infect Ther 10:775–790CrossRefPubMedGoogle Scholar
  43. Kourtesi Ch, Ball AR, Huang YY (2013) Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 7:34–52CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513CrossRefPubMedGoogle Scholar
  45. Kwak YG, Truong-Bolduc QC, Kim HB, Song KH, Kim ES, Hooper DC (2013) Association of norB overexpression and fluoroquinolone resistance in clinical isolates of Staphylococcus aureus from Korea. J Antimicrob Chemother 68:2766–2772CrossRefPubMedPubMedCentralGoogle Scholar
  46. Langeveld WT, Veldhuizen EJA, Burt SA (2013) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 40:76–94CrossRefPubMedGoogle Scholar
  47. Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492CrossRefPubMedGoogle Scholar
  48. Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li L, Feng W, Zhang Z et al (2015) Macrolide-lincosamide-streptogramin resistance phenotypes and genotypes of coagulase-positive Staphylococcus aureus and coagulase-negative staphylococcal isolates from bovine mastitis. BMC Vet Res 11:168. doi: 10.1186/s12917-015-0492-8 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lomovskaya O, Lee A, Hoshino K et al (1999) Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:1340–1346PubMedPubMedCentralGoogle Scholar
  51. Marquez B, Neuville L, Moreau NJ et al (2005) Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry 66:1804–1811CrossRefPubMedGoogle Scholar
  52. Masotti V, Juteau F, Bessiere JM, Viano J (2003) Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J Agric Food Chem 51:7115–7121CrossRefPubMedGoogle Scholar
  53. McPhee JB, Tamber S, Brazas MD et al (2009) Antibiotic resistence due to reduced uptake. In: Mayers DL (ed) Antimicrobial drug resistance, chapter 9. Humana Press, New York, pp 97–110CrossRefGoogle Scholar
  54. Michalet S, Cartier G, David B et al (2007) N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorg Med Chem Lett 17:1755–1758CrossRefPubMedGoogle Scholar
  55. Mistríková I, Vaverková Š (2009) Patterns of variation in lipophilic and hydrophilic constituents in flower developmental stages of Echinacea purpurea (L.) Moench cultivated in Slovakia. Plant Soil Environ 55:70–73Google Scholar
  56. Morel C, Stermitz FR, Tegos G, Lewis K (2003) Isoflavones as potentiators of antibacterial activity. J Agric Food Chem 51:5677–5679CrossRefPubMedGoogle Scholar
  57. Oluwatuyi M, Kaatz G, Gibbons S (2004) Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65:3249–3254CrossRefPubMedGoogle Scholar
  58. Pereda MR, Kaatz GW, Gibbons S (2006) Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod 69:406–409CrossRefGoogle Scholar
  59. Ponnusamy K, Ramasamy M, Savarimuthu I, Paulraj MG (2010) Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand J Infect Dis 42:6–7CrossRefGoogle Scholar
  60. Prasch S, Bucar F (2015) Plant derived inhibitors of bacterial efflux pumps: an update. Phytochem Rev 14:061–974CrossRefGoogle Scholar
  61. Price CTD, Kaatz GW, Gustafson JE (2002) The multidrug efflux pump NorA is not required for salicylate-induced reduction in drug accumulation by Staphylococcus aureus. Int J Antimicrob Agents 20:206–213CrossRefPubMedGoogle Scholar
  62. Qiu J, Feng H, Lu J et al (2010) Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl Environ Microbiol 76:5846–5851CrossRefPubMedPubMedCentralGoogle Scholar
  63. Qiu J, Zhang X, Luo M, Li H et al (2011) Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus. PLoS ONE 6(1):e16160. doi: 10.1371/journal.pone.0016160 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ramalhete C, Spengler G, Martins A et al (2011) Inhibition of efflux pumps in meticillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int J Antimicrob Agents 37:70–74CrossRefPubMedGoogle Scholar
  65. Ramirez MN, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171CrossRefPubMedPubMedCentralGoogle Scholar
  66. Roccaro AS, Blanco AR, Giuliani F et al (2004) Epigallocatechin gallate enhances the activity of tetracycline in staphylococci by inhibitory its efflux from bacterial cells. Antimicrob Agents Chemother 48:1968–1973CrossRefPubMedCentralGoogle Scholar
  67. Rosato A, Vitali C, De Laurentis N et al (2007) Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 14:727–732CrossRefPubMedGoogle Scholar
  68. Roy S, Kumari N, Pahwa S et al (2013) NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia 90:140–150CrossRefPubMedGoogle Scholar
  69. Schindler BD, Jacinto P, Kaatz GW (2013) Inhibition of efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics. Future Med 8:491–507CrossRefGoogle Scholar
  70. Schmitz F, Fluit A, Luckefahr M et al (1998) The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphyloccocus aureus. J Antimicrob Chemother 42:807–810CrossRefPubMedGoogle Scholar
  71. Shiu W, Malkinson J, Rahman M et al (2013) A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int J Antimicrob Agents 42:513–518CrossRefPubMedGoogle Scholar
  72. Sikkema J, De Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  73. Smith EC, Williamson EM, Zloh M, Gibbons S (2005) Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res 19:538–542CrossRefPubMedGoogle Scholar
  74. Smith EC, Williamson EM, Wareham N et al (2007a) Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 68:210–217CrossRefPubMedGoogle Scholar
  75. Smith EC, Kaatz GW, Seo SM et al (2007b) The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 51:4480–4483CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stavri M, Piddock LJV, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59:1247–1260CrossRefPubMedGoogle Scholar
  77. Stermitz FR, Lorenz P, Tawara JN et al (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 97:1433–1437CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stermitz F, Scriven LN, Tegos G, Lewis K (2002) Two flavonols from Artemisa annua which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med 68:1140–1141CrossRefPubMedGoogle Scholar
  79. Stermitz FR, Halligan KM, Morel C et al (2003) Polyacylated neohesperidosides from Geranium caespitosum: bacterial multidrug resistance pump inhibitors. Bioorg Med Chem Lett 13:1915–1918CrossRefPubMedGoogle Scholar
  80. Szabó MA, Varga GZ, Hohmann J et al (2010) Inhibition of quorum-sensing signals by essential oils. Phytother Res 24:782–786CrossRefPubMedGoogle Scholar
  81. Tegos G, Stermitz FR, Lomovskaya O, Lewis K (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46:3133–3141CrossRefPubMedPubMedCentralGoogle Scholar
  82. Trzcinski K, Cooper BS, Hryniewicz W, Dowson CG (2010) Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 45:763–770CrossRefGoogle Scholar
  83. Wang Y, Wu CM, Lu LM et al (2008) Macrolide-lincosamide-resistant phenotypes and genotypes of Staphylococcus aureus isolated from bovine clinical mastitis. Vet Microbiol 130:118–125CrossRefPubMedGoogle Scholar
  84. WHO (2014) Antimicrobial resistance global report on surveillance. Global report on surveillance. http://www.who.int/drugresistance/documents/surveillancereport/en/

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Molecular Biology, Faculty of Natural ScienceComenius UniversityBratislavaSlovak Republic
  2. 2.Department of Pharmacognosy and Botany, Faculty of PharmacyComenius UniversityBratislavaSlovak Republic

Personalised recommendations