Phytochemistry Reviews

, Volume 14, Issue 6, pp 1053–1072 | Cite as

Brassinosteroids: synthesis and biological activities

  • Jana Oklestkova
  • Lucie Rárová
  • Miroslav Kvasnica
  • Miroslav Strnad


Brassinosteroids (BRs) are a relatively recently discovered group of phytohormones that are essential for normal plant growth and development. They participate in regulation of numerous vital physiological processes in plants, such as elongation, germination, photomorphogenesis, immunity and reproductive organ development. Structurally they are very similar to animal steroid hormones and include about 70 polyhydroxylated sterol derivatives. They are found at low levels in practically all plant organs. Recent studies have indicated that BRs have antiproliferative, anticancer, antiangiogenic, antiviral and antibacterial properties in animal cell systems, and thus have potential medical applications. Among others, BRs can inhibit replication of viruses in confluent human cell cultures, sometimes with high selectivity indexes, inducing cytotoxic effects in various types of cancer cells but not normal human cells. Thus, they include promising leads for developing potent new anticancer drugs. The aims of this article are to overview chemical characteristics, biological activities and the potential medical applications of natural BRs.


Brassinosteroids Chemical synthesis Plant biological activity Antiproliferative activity Antiviral activity 



This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic—NPU I program with project LO1204.


  1. Aburatani M, Takeuchi T, Mori K (1985) Structural revision of the acetal intermediates in brassinolide synthesis. Agric Biol Chem 49:3557–3562CrossRefGoogle Scholar
  2. Albrecht C, Boutrot F, Segonzac C, Schwessinger B et al (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. PNAS 109:303–308PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anastasia M, Allevi P, Ciuffreda P, Fiecchi A (1983) Stereoselective synthesis of crinosterol [(22E,24S)-Ergosta-5,22-dien-3β-ol]. J Chem Soc Perkin Trans 1:2365–2367CrossRefGoogle Scholar
  4. Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59(11):3019–3026PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorea vulgaris. Plant Physiol Biochem 38:209–2015CrossRefGoogle Scholar
  6. Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–324CrossRefGoogle Scholar
  7. Bajguz A (2011) Brassinosteroids—occurence and chemical structures in plants. In: Hayat S, Ahmad A (eds) Brassinosteroids a class of plant hormone. Springer, London, pp 1–29CrossRefGoogle Scholar
  8. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8PubMedCrossRefGoogle Scholar
  9. Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochem 62:1027–1046CrossRefGoogle Scholar
  10. Belkhadir Y, Jaillais Y, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. PNAS 109:297–302PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bhardwaj R, Arora HK, Nagar PK, Thukral AK (2006) Brassinosteroids-A novel group of plant hormones. In: Trivedi PC (ed) Plant molecular physiology-current scenario and future projections. Aaviskar Publisher, Jaipur, pp 58–84Google Scholar
  12. Bhat TA, Singh RP (2008) Tumor angiogenesis—a potential target in cancer chemoprevention. Food Chem Toxicol 46(4):1334–1345PubMedCrossRefGoogle Scholar
  13. Cano-Delgado A, Yin Y, Yu C, Vafeados D et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351PubMedCrossRefGoogle Scholar
  14. Cao S, Xu Q, Cao Y, Qian K et al (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66CrossRefGoogle Scholar
  15. Carange J, Longpré F, Daoust B, Martinoli MG (2011) 24-Epibrassinolide, a phytosterol from the brassinosteroid family, protects dopaminergic cells against MPP-induced oxidative stress and apoptosis. J Toxicol 2011:392859PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25(8):1031–1042PubMedCrossRefGoogle Scholar
  17. Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459PubMedCentralPubMedCrossRefGoogle Scholar
  18. Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982PubMedCrossRefGoogle Scholar
  19. Clouse SD, Sasse JM (1998) Brassinosteriods: essential regulators of plant growth and development. Ann Rev Plant Physiol Plant Mol Biol 49:427–451CrossRefGoogle Scholar
  20. Clouse SD, Hall AF, Langford M et al (1993) Physiological and molecular effects of brassinosteroids on Arabidopsis Thaliana. J Plant Growt Regul. 12:61–66CrossRefGoogle Scholar
  21. Clouse SD, Langford M, McMorris T (1996) A brassinosteroid-insensitive mutant in Arabidopsis Thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29:681–691PubMedCrossRefGoogle Scholar
  23. Donaubauer JR, Greaves AM, McMorris TC (1984) A novel synthesis of brassinolide. J Org Chem 49:2834–2837CrossRefGoogle Scholar
  24. Fariduddin Q, Khanam S, Hasan S, Ali B et al (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant. 31:889–897CrossRefGoogle Scholar
  25. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358PubMedCrossRefGoogle Scholar
  26. Franek F, Eckschlager T, Kohout L (2003) 24-Epibrassinolide at subnanomolar concentrations modulates growth and production characteristics of a mouse hybridoma. Collect Czech Chem Commun 68:2190–2200CrossRefGoogle Scholar
  27. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Ann Rev Plant Biol 54:137–164CrossRefGoogle Scholar
  28. Fung S, Siddall JB (1980) Stereoselective synthesis of brassinolide: a plant growth promoting steroidal lactone. J Am Chem Soc 102:6580–6581CrossRefGoogle Scholar
  29. Goetz M, Godt DE, Roitsch T (2000) Tissue-specific induction of the mRNA for an extracelluar invertase isoenzyme of tomato by brassinosteroids suggest a role for steroid hormones in assimilate partitioning. Plant J 22:515–522PubMedCrossRefGoogle Scholar
  30. Gonzalez N, De Bodt S, Sulpice R et al (2010) Increased leaf size: different means to an end. Plant Phys 153:1261–1279CrossRefGoogle Scholar
  31. Gonzalez-Garcia MP, Vilarrasa-Blasi J, Thiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado A (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859PubMedCrossRefGoogle Scholar
  32. Grove MD, Spencer FG, Rohwedder WK, Mandava NB, Worley JF, Wrthen JD Jr, Cook JC Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217CrossRefGoogle Scholar
  33. Guan M, Roddick J (1988) Epibrassinolide inhibition of development of excised, adventitious and intact roots of tomato: comparison with the effects of steroidal estrogens. Physiol Plant 74:720–726CrossRefGoogle Scholar
  34. Hacham Y, Holland N, Butterfield C, Chory J, Savaldi- Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hacham Y, Sela A, Friedlander L, Savaldi-Goldstein S (2012) BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal Behav 7:1–3CrossRefGoogle Scholar
  36. Hamdy AH, Aboutabl EA, Sameer S, Hussein AA, Díaz-Marrero AR, Darias J, Cueto M (2009) 3-Keto-22-epi-28-nor-cathasterone, a brassinosteroid-related metabolite from Cystoseira myrica. Steroids 74(12):927–930PubMedCrossRefGoogle Scholar
  37. Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175CrossRefGoogle Scholar
  38. Haubrick L, Assmann S (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Env. 29:446–457CrossRefGoogle Scholar
  39. Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Phys Plantarum 128:134–143CrossRefGoogle Scholar
  40. Hayat S, Ahmad A (2003) Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Ann Appl Biol 143:121–124CrossRefGoogle Scholar
  41. Honda T, Keino K, Tsubuki M (1990) A concise stereoselective synthesis of castasterone. J Chem Soc Chem Commun 8:650–652CrossRefGoogle Scholar
  42. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y et al (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6-oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 32:495–508PubMedCrossRefGoogle Scholar
  43. Horvath DP, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–134PubMedCrossRefGoogle Scholar
  44. Huang LF, Zhou WS, Sun LQ, Pan XF (1993) Studies on steroidal plant-growth regulators. Part 29. Osmium tetroxide-catalysed asymmetric dihydroxylation of the (22E,24R)- and the (22E,24S)-24-alkyl steroidal unsaturated side chain. J Chem Soc Perkin Trans 1:1683–1686CrossRefGoogle Scholar
  45. Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, Liang WQ, Wang ZY, Lin WH (2013) BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant 6(2):456–469PubMedCrossRefGoogle Scholar
  46. Hurski A, Zhabinskii V, Khripach V (2013) A short convergent synthesis of the side chains of brassinolide, cathasterone, and cryptolide. Tetrahedron Lett 54:584–586CrossRefGoogle Scholar
  47. Hurski AL, Ermolovich YV, Zhabinskii VN, Khripach VA (2015) The development and use of a general route to brassinolide, its biosynthetic precursors, metabolites and analogues. Org Biomol Chem 13:1446–1452PubMedCrossRefGoogle Scholar
  48. Ibanes M, Fabregas N, Chory J, Cano-Delgado AI (2009) Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc Natl Acad Sci USA 106:13612–13617CrossRefGoogle Scholar
  49. Ishiguro M, Takatsuto S, Morisaki M, Ikekawa N (1980) Synthesis of brassinolide, a steroidal lactone with plant-growth promoting activity. J Chem Soc Chem Commun 962–964Google Scholar
  50. Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cell. Plant Cell Physiol 32:1007–1014Google Scholar
  51. Janeczko A, Biesaga Koscielniak J, Dziurka M (2009) 24-Epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Sci Technol. 37:625–639CrossRefGoogle Scholar
  52. Janeczko A, Biesaga-Koscielniak J, Oklestkova J et al (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311–321Google Scholar
  53. Jiang WB, Huang HY, Hu YW, Zhu SW et al (2013) Brassinosteroids regulates seed size and shape in Arabidopsis. Plant Phys. 162:1965–1977CrossRefGoogle Scholar
  54. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis Thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364PubMedCrossRefGoogle Scholar
  55. Kametani T, Keino K, Kigawa M, Tsubuki M, Honda T (1989) Stereocontroled synthesis of the brassinolide side chain via pyranone derivative. Tetrahedron Lett 30:3141–3142CrossRefGoogle Scholar
  56. Kang Y, Guo S, Li J, Duan J (2009) Effect of root 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativum L.) seedlings under hypoxia. Plant Growth Regul 57:259–269CrossRefGoogle Scholar
  57. Katsumi M (1985) Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol 26:615–626Google Scholar
  58. Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S et al (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17:1116–1122PubMedCrossRefGoogle Scholar
  59. Kesisis G, Broxterman H, Giaccone G (2007) Angiogenesis inhibitors. drug selectivity and target specificity. Curr Pharm Des 13(27):2795–2809PubMedCrossRefGoogle Scholar
  60. Kesy J, Trzaskalsky A, Galoh E, Kopcewicz J (2003) Inhibitory effect of brassinosetroids on the flowering of the short-day plant Pharbitis nil. Biol Plant 47:597–600CrossRefGoogle Scholar
  61. Khripach VA, Zhabinskii V, Ermolovich Y, Gulyakevich O, Mekhtiev A, Karalkin P (2012) Synthesis and biological activity of the probable biosynthetic precursors of 24(1)-norbrassinolide. Russ J Bioorg Chem 38:438–446CrossRefGoogle Scholar
  62. Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Ann Rev Plant Biol 61:681–704CrossRefGoogle Scholar
  63. Kim SK, Chang SC, Lee EJ, Chung WS et al (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004PubMedCentralPubMedCrossRefGoogle Scholar
  64. Kripach V, Zhabinskii V, De Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447CrossRefGoogle Scholar
  65. Krishna P (2003) Brassinosteriods- mediated stress responses. J Plant Growth Regul 22:289–297PubMedCrossRefGoogle Scholar
  66. Kvasnica M, Oklestkova J, Bazgier V, Rarova L, Berka K, Strnad M (2014) Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain. Steroids 85:58–64PubMedCrossRefGoogle Scholar
  67. Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213(5):758–763PubMedCrossRefGoogle Scholar
  68. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938PubMedCrossRefGoogle Scholar
  69. Li L, Van Staden J, Jäger AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul 25:81–87CrossRefGoogle Scholar
  70. Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22PubMedCentralPubMedCrossRefGoogle Scholar
  71. Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61:4221–4230PubMedCrossRefGoogle Scholar
  72. Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4(1):46–56PubMedCrossRefGoogle Scholar
  73. Malíková J, Swaczynová J, Kolář Z, Strnad M (2008) Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 69(2):418–426PubMedCrossRefGoogle Scholar
  74. Mandava N, Mitchell JW (1971) New plant hormones: chemical and biological investigations. Indian Agr 15:19–31Google Scholar
  75. McMorris TC, Patil PA (1993) Improved synthesis of 24-epibrassinolide from ergosterol. J Org Chem 58:2338–2339CrossRefGoogle Scholar
  76. McMorris TC, Patil PA, Chavez RG, Baker ME, Clouse SD (1994) Synthesis and biological activity of 24-homobrassinolide and analogues. Phytochemistry 36:585–589CrossRefGoogle Scholar
  77. McMorris TC, Chavez RG, Patil PA (1996) Improved synthesis of brassinolide. J Chem Soc Perkin Trans 1:295–302CrossRefGoogle Scholar
  78. Michelini FM, Ramirez JA, Berra A, Galagovsky LR, Alche LE (2004) In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroid analogues. Steroids 69:713–720PubMedCrossRefGoogle Scholar
  79. Michelini FM, Berra A, Alché LE (2008) The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. J Ster Biochem Mol Biol 108:164–170CrossRefGoogle Scholar
  80. Michelini FM, Zorrilla P, Robello C, Alché LE (2013) Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog. Bioorg Med Chem 21(2):560–568 PubMedCrossRefGoogle Scholar
  81. Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV (1970) Brassins a new family of plant hormones from rape pollen. Nature 225:1065–1066PubMedCrossRefGoogle Scholar
  82. Mitchell JW, Mandava N, Worley JF, Drowne ME (1971) Fatty hormones in pollen and immature seeds of bean. J Agric Food Chem 19:391–393CrossRefGoogle Scholar
  83. Mori K, Sakakibara M, Okada K (1984) Synthesis of naturally occurring brassinosteroids employing cleavage of 23,34-epoxides as key reactions. Synthesis of brassinolide, castasterone, dolicholide, dolichosterone, homodolicholide, homodolichosterone, 6-deoxocastasterone and 6-deoxodolichosterone. Tetrahedron 40:1767–1781CrossRefGoogle Scholar
  84. Müssig C (2005) Brassinosteroid-promoted growth. Plant Biol. 7:110–117PubMedCrossRefGoogle Scholar
  85. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S et al (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887–898PubMedCrossRefGoogle Scholar
  86. Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis Thaliana. Plant Cell Physiol 43:239–244PubMedCrossRefGoogle Scholar
  87. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477PubMedCrossRefGoogle Scholar
  88. Nomura T, Sato T, Bishop GJ, Kamiya Y, Yokota T (2001) Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57:171–178PubMedCrossRefGoogle Scholar
  89. Nomura T, Jager C, Kitasaka Y, Takeuchi K et al (2004) Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiol 135:2220–2229PubMedCentralPubMedCrossRefGoogle Scholar
  90. Nomura T, Ueno M, Yamada Y, Takatsuto S et al (2007) Roles of brassinosteroids and related m RNAs in pea seed growth and germination. Plant Physiol 143:1680–1688PubMedCentralPubMedCrossRefGoogle Scholar
  91. Obakan P, Arisan ED, Calcabrini A, Agostinelli E, Bolkent S, Palavan-Unsal N (2014a) Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines. Amino Acids 46(3):553–564PubMedCrossRefGoogle Scholar
  92. Obakan P, Arisan ED, Coker-Gurkan A, Palavan-Unsal N (2014b) Epibrassinolide-induced apoptosis regardless of p53 expression via activating polyamine catabolic machinery, a common target for androgen sensitive and insensitive prostate cancer cells. Prostate 74(16):1622–1633PubMedCrossRefGoogle Scholar
  93. Oh MH, Sun J, Oh DH, Zielinski RE, Clouse SD, Huber SC (2011) Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiol 157:120–131PubMedCentralPubMedCrossRefGoogle Scholar
  94. Ohnishi T, Szatmari AM, Watanabe B, Fujita S et al (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275–3288PubMedCentralPubMedCrossRefGoogle Scholar
  95. Ono E, Orika E, Nakamura T et al (2000) Application of brassinosteroid to Tabebuia alba (Bignoniaceae) plants. Rev Brasil Fisiol Vegetal 12:187–194Google Scholar
  96. Parl FF (2000) Estrogens, estrogen receptor and breast cancer. In: Biomedical and health research. IOS Press, AmsterdamGoogle Scholar
  97. Pietras RJ, Weinberg OK (2005) Antiangiogenic steroids in human cancer therapy. Evid Based Complement Alternat Med 2(1):49–57PubMedCentralPubMedCrossRefGoogle Scholar
  98. Ramírez JA, Teme Centurión OM, Gros EG, Galagovsky LR (2000) Synthesis and bioactivity evaluation of brassinosteroid analogs. Steroids 65:329–337PubMedCrossRefGoogle Scholar
  99. Rárová L, Zahler S, Liebl J, Kryštof V, Sedlák D, Bartůněk P, Strnad M (2012) Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells. Steroids 77:1502–1509PubMedCrossRefGoogle Scholar
  100. Roddick JG, Ikekawa N (1992) Modification of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. J Plant Physiol 140:70–74CrossRefGoogle Scholar
  101. Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of wheat variety. Plant Growth Regul 14(2):173–181CrossRefGoogle Scholar
  102. Sakakibara M, Mori K (1982) Facile synthesis of (22R,23R)-homobrassinolide. Agric Biol Chem 46:2769–2779CrossRefGoogle Scholar
  103. Sakakibara M, Mori K (1983) Improved synthesis of brassinolide. Agric Biol Chem 47:663–664CrossRefGoogle Scholar
  104. Sakakibara M, Okada K, Ichikawa Y, Mori K (1982) Synthesis of brassinolide, a plant growth promoting steroidal lactone. Heterocycles 17:301–304CrossRefGoogle Scholar
  105. Sasse JM (2003) Physiological actions of Brassinosteroids: an update. J Plant Growth Regul 22(4):276–288PubMedCrossRefGoogle Scholar
  106. Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202PubMedCrossRefGoogle Scholar
  107. Shahin SA, Sunil Kumar GB, Khan M, Doohan FM (2013) Brassinosteroid Enhances resistance to fusarium diseases of barley. Phytopathology 103:1260–1267CrossRefGoogle Scholar
  108. Shen ZW, Zhou WS (1990) Study on the syntheses of brassinolide and related compounds. Part 14. Highly stereoselective construction of the side-chain of brassinosteroids utilizing the β-Alkylative 1,3-carbonyl transposition of the steroidal 22-En-24-one. J Chem Soc Perkin Trans 1:1765–1767Google Scholar
  109. Singh AP, Savaldi-Goldstein S (2015) Growth control: brassinosteroid activity gets context. J Exp Botany 66:1123–1132CrossRefGoogle Scholar
  110. Steigerová J, Oklešťková J, Levková M, Rárová L, Kolář Z, Strnad M (2010) Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem Biol Interact 5:487–496CrossRefGoogle Scholar
  111. Steigerová J, Rárová L, Oklešťková J, Křížová K, Levková M, Šváchová M, Kolář Z, Strnad M (2012) Mechanisms of natural brassinosteroid-induced apoptosis of prostate cancer cells. Food Chem Toxicol 50:4068–4076PubMedCrossRefGoogle Scholar
  112. Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X (2015) Brassinosteroid signaling regulates leaf erectness in oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34(2):220–228PubMedCrossRefGoogle Scholar
  113. Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158PubMedCentralPubMedCrossRefGoogle Scholar
  114. Szekeres M, Nemeth K, Knocz-Kalman Z et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182PubMedCrossRefGoogle Scholar
  115. Takatsuto S, Ikekawa N (1984) Short-step synthesis of plant growth-promoting brassinosteroids. Chem Pharm Bull 32:2001–2004CrossRefGoogle Scholar
  116. Takatsuto S, Yazawa N, Ishiguro M, Morisaki M, Ikekawa N (1984) Stereoselective synthesis of plant growth-promoting steroids, brassinolide, castasterone, typhasterol, and their 28-Nor analogues. J Chem Soc Perkin Trans 1:139–146CrossRefGoogle Scholar
  117. Takeuchi Y, Omigawa Y, Ogasawara M, Yoneyama K et al (1995) Effects of brassinosteroids on conditioning and germination of clover broomrape seeds. Plan Growth Regul 16:153–160CrossRefGoogle Scholar
  118. Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22:259–271CrossRefGoogle Scholar
  119. Thompson MJ, Mandava N, Flippen-Anderson JL, Worley JF, Dutky SR, Robbins WE, Lusby W (1979) Synthesis of brassino steroids: new plant-growth-promoting steroids. J Org Chem 44:5002–5004CrossRefGoogle Scholar
  120. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26(11):4376–4393PubMedCentralPubMedCrossRefGoogle Scholar
  121. Tsubuki M, Keino K, Honda T (1992) Stereoselective Synthesis of plant-growth-regulating steroids: brassinolide, castasterone, and their 24,25-substituted analogues. J Chem Soc Perkin Trans 1:2643–2649CrossRefGoogle Scholar
  122. Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27(8):2261–2272PubMedCrossRefGoogle Scholar
  123. Vardhini BV, Rao SSR (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843–847CrossRefGoogle Scholar
  124. Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27(3):153–167 Google Scholar
  125. Vragović K, Sela A, Friedlander-Shani L, Fridman Y, Hacham Y, Holland N, Bartom E, Mockler TC, Savaldi-Goldstein S (2015) Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc Natl Acad Sci U S A 112(3):923–928PubMedCentralPubMedCrossRefGoogle Scholar
  126. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857PubMedCentralPubMedCrossRefGoogle Scholar
  127. Wachsman MB, Castilla V (2012) Antiviral properties of brassinosteroids. In: Pereira-Netto AB (ed) Brassinosteroids: practical applications in agriculture and human health. Bentham Science Publishers, Sharjah, pp 57–71Google Scholar
  128. Wachsman MB, Lopez EMF, Ramirez JA, Galagovsky LR, Coto CE (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antivir Chem Chemother 11:71–77PubMedCrossRefGoogle Scholar
  129. Wachsman MB, Ramirez JA, Galagovsky LR, Cotto CE (2002) Antiviral activity of brassinosteriods derivatives against measles virus in cell cultures. Antiviral Chem Chemother 13:61–66CrossRefGoogle Scholar
  130. Wachsman MB, Castilla V, Talarico LB, Ramirez JA, Galagovsky LR, Coto CE (2004) Antiherpetic mode of action of (22S,23S)-3beta-bromo-5alpha,22,23-trihydroxystigmastan-6-one in vitro. Int J Antimicrob Agents 23(5):524–526Google Scholar
  131. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383PubMedCrossRefGoogle Scholar
  132. Wu YD, Lou YJ (2007) Brassinolide, a plant sterol from pollen of Brassica napus L., induces apoptosis in human prostate cancer PC-3 cells. Pharmazie 62:392–395PubMedGoogle Scholar
  133. Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 2008:2130–2145CrossRefGoogle Scholar
  134. Yamaguchi T, Wakizuka T, Hirai K, Fujii S, Fujita A (1987) Stimulation of germination in aged rice seeds by pretreatment with brassinolide. Proc Plant Growth regul Soc Am 14:26–27Google Scholar
  135. Yamamato R, Demura T, Fujuda H (1997) Brassinosteroid induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983CrossRefGoogle Scholar
  136. Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids action: from signal transduction to plant development. Mol Plant 4:588–600PubMedCrossRefGoogle Scholar
  137. Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci 107(13):6100–6105 Google Scholar
  138. Yokota T, Sato T, Takeuchi Y, Nomura T et al (2001) Roots and shoots of tomato produce 6-deoxo-28norcathasterone, 6-deoxo-28-nortyphasterole and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochem. 58:233–238CrossRefGoogle Scholar
  139. Zhang DW, Deng XG, Fu FQ, Lin HH (2015) Induction of plant virus defense response by brassinosteroids and brassinosteroid signalling in Arabidopsis Thaliana. Planta 241:875–885PubMedCrossRefGoogle Scholar
  140. Zhiponova MK, Vanhoutte I, Bouldof V et al (2013) Brassinosteroid production and signalling differentially control cell division and expansion in the leaf. New Phytol 197:490–502PubMedCrossRefGoogle Scholar
  141. Zhou WS, Shen ZW (1991) Study on the synthesis of brassinolide and related compounds. Part 15. Formal synthesis of brassinolide via stereoselective sulphenate-sulphoxide transformation. J Chem Soc Perkin Trans 1:2827–2830CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jana Oklestkova
    • 1
  • Lucie Rárová
    • 1
  • Miroslav Kvasnica
    • 1
  • Miroslav Strnad
    • 1
  1. 1.Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCRPalacký UniversityOlomoucCzech Republic

Personalised recommendations