Phytochemistry Reviews

, Volume 15, Issue 5, pp 985–1008 | Cite as

Extractives in Douglas-fir forestry residue and considerations for biofuel production

  • Karl R. Oleson
  • Daniel T. Schwartz


Forestry residues are a plentiful, low environmental impact feedstock for biofuels and bioproducts. Douglas-fir is the most prevalent tree species in the timberlands of western North America, with approximately 5 million tons of sustainably harvestable forestry residues available each year. These forestry residues are an important potential biomass feedstock containing holocellulose, lignin, protein, ash, and phytochemicals commonly identified as “extractives”. The phytochemical extractive category make up 5–25 % of the dry weight for different tissues of Douglas-fir, but are rarely represented with molecular detail in feedstock models of residues for biofuel or other bioproduct. These extractives contain both primary and secondary metabolites and represent potential revenue sources as side products from processing, but also includes species that are astringent, toxic, endocrine disruptors and/or reactive in similar chemical processes. Within the “extractives” category are phytochemicals such as proanthocyanidins, phlobaphenes, waxes, flavonoids, terpenoids, phytosterols, lignans and many more. This review first identifies phytochemical molecules found in different Douglas-fir tissues, then quantities these by category and individual molecular species, to the extent allowed by the literature. We combine the literature into a quantitative, molecularly detailed, mass conserving model for a particular Douglas-fir forestry residue (“slash”). This model is used in a sulfite/bisulfite biofuel process simulation for understanding the molecular partitioning of extractives in different process streams. Model results are used to explore some implications for extractive species in the production of sugars and waste products from Douglas-fir forestry residue feedstock.


Biomass Bioproducts Composition Feedstock Slash 



The authors thank the financial support of the Agriculture and Food Research Initiative Competitive Grant (No. 2011-68005-30416), USDA National Institute of Food and Agriculture (NIFA) through the Northwest Advanced Renewables Alliance (NARA). The authors also want to thank Ikechukwu C. Nwaneshiudu for his help and direction when starting work on the ASPEN simulations.


  1. Abraham MH, Acree WE (2014) On the solubility of quercetin. J Mol Liq 197:157–159CrossRefGoogle Scholar
  2. Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5(2):175–196CrossRefGoogle Scholar
  3. Auriol D, Nalin R, Robe P, Lefevre F (2009) Water soluble and activable phenolics derivatives with dermocosmetic and therapeutic applications and process for preparing said derivatives. US Patent 20090233876:17Google Scholar
  4. Back EL (2000) The location and morphology of resin components in the wood. In: Pitch control, wood resin and deresination, TAPPI Press, Atlanta, G.A, p 135Google Scholar
  5. Bae YS, Malan JCS, Karchesy JJ (1994) Sulfonation of procyanidin polymers—evidence of intramolecular rearrangement and aromatic ring substitution. Holzforschung 48(2):119–123CrossRefGoogle Scholar
  6. Buchbauer G, Jirovetz L, Wasicky M, Nikiforov A (1994) Comparative investigation of Douglas-fir headspace samples, essentail oils, and extracts (needles and twigs) using GC-FID and GC-FTIR-MS. J Agric Food Chem 42(12):2852–2854CrossRefGoogle Scholar
  7. Conner AH, Foster DO (1981) Triterpenes from Douglas fir sapwood. Phytochemistry 20(11):2543–2546CrossRefGoogle Scholar
  8. De Smet E, Mensink RP, Plat J (2012) Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 56(7):1058–1072PubMedCrossRefGoogle Scholar
  9. Dellus V, Mila I, Scalbert A, Menard C, Michon V, duPenhoat C (1997) Douglas-fir polyphenols and heartwood formation. Phytochemistry 45(8):1573–1578CrossRefGoogle Scholar
  10. Denton TE, Howell WM, Allison JJ, McCollum J, Marks B (1985) Masculinization of female mosquitofish by exposure to plant sterols and mycobacterium smegmatis. Bull Environ Contam Toxicol 35(5):627–632PubMedCrossRefGoogle Scholar
  11. Dziedzic JA, McDonald AG (2012) A comparative survey of proteins from recalcitrant tissues of a non-model gymnosperm, Douglas-fir. Electrophoresis 33(7):1102–1112PubMedCrossRefGoogle Scholar
  12. Ekman R, Holmbom B (2000) The chemistry of wood resin. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. TAPPI Press, Atlanta, pp 37–76Google Scholar
  13. Erdtman H, Kimland B, Norin T, Daniels PJL (1968) The constituents of the “pocket resin” from Douglas fir Pseudotsuga menziesii (Mirb.) Franco. Acta Chem Scand 22(3):938–942CrossRefGoogle Scholar
  14. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238PubMedCrossRefGoogle Scholar
  15. Fischer F, Koch H, Borchers B, Hontsch R, Pruzina KD (1981) Preparation and use of phytosterols from wood. Pharmazie 36(7):456–462Google Scholar
  16. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73(2):627–650Google Scholar
  17. Foo LY, Karchesy J (1989a) On tyrosine and tryptophane determinations in proteins. J Chem Soc Chem Commun 4:217–219CrossRefGoogle Scholar
  18. Foo LY, Karchesy JJ (1989b) Polyphenolic glycosides from Douglas-fir inner bark. Phytochemistry 28(4):1237–1240CrossRefGoogle Scholar
  19. Foo LY, Karchesy JJ (1989c) Procyanidin polymers of Douglas-fir bark—structure from degradation with phloroglucinol. Phytochemistry 28(11):3185–3190CrossRefGoogle Scholar
  20. Foo LY, Karchesy JJ (1989d) Chemical nature of phlobaphenes. In: Hemingway RW (ed) Chemistry and significance of condensed tannins. Plenum Press, New York, pp 109–118CrossRefGoogle Scholar
  21. Foo LY, Karchesy JJ (1991) Procyanidin tetramers and pentamers from Douglas-fir bark. Phytochemistry 30(2):667–670CrossRefGoogle Scholar
  22. Foo LY, McGraw GW, Hemingway RW (1983) Condensed tannins: preferential substitution at the interflavanoid bond by sulphite ion. J Chem Soc, Chem Commun 12:672–673CrossRefGoogle Scholar
  23. Foo LY, Helm R, Karchesy J (1992) 5′,5′–bisdihydroquercetin—a B-ring linked biflavonoid from Pseudotsuga Menziesii. Phytochemistry 31(4):1444–1445CrossRefGoogle Scholar
  24. Foster DO, Zinkel DF, Conner AH (1980) Tall oil percursors of Douglas fir. TAPPI 63(12):103–105Google Scholar
  25. Gao J, Anderson D, Levie B (2013) Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from catchlight energy’s sugar process (CLE Sugar). Biotechnol Biofuels 6:10PubMedPubMedCentralCrossRefGoogle Scholar
  26. Graham HM, Kurth EF (1949) Constituents of extractives from Douglas fir. Ind Eng Chem 41(2):409–414CrossRefGoogle Scholar
  27. Hall A (1971) Utilization of Douglas-fir bark. Northwest Forest and Range Experiment Station, Forest Service, US Department of Agriculture, PortlandGoogle Scholar
  28. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, Nishibe S, Adlercreutz H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agr Food Chem 49(7):3178–3186CrossRefGoogle Scholar
  29. Hergert HL (1960) Chemical composition of tannins and polyphenols from conifer wood and bark. Forest Prod J 10(11):610–617Google Scholar
  30. Hergert HL, Goldschmid O (1958) Biogenesis of heartwood and bark constituents. I. A new taxifolin glucoside. J Org Chem 23(5):700–704CrossRefGoogle Scholar
  31. Hoge WH (1954) the resistance of Douglas-fir to sulphite pulping. TAPPI 37(9):369–376Google Scholar
  32. Holmbom T, Reunanen M, Fardim P (2008) Composition of callus resin of norway spruce, scots pine, European larch and Douglas fir. Holzforschung 62(4):417–422CrossRefGoogle Scholar
  33. Hubbard JK (1949) The distribution and properties of the tannin in Douglas fir bark (Pseudotsuga taxifolia, Britt.). Dissertation, Oregon State CollegeGoogle Scholar
  34. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen J, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory, Golden, ColoradoGoogle Scholar
  35. Jirovetz L, Puschmann C, Stojanova A, Metodiev S, Buchbauer G (2000) Analysis of the essential oil volatiles of Douglas fir (Pseudotsuga menziesii) from Bulgaria. Flavour Fragr J 15(6):434–437CrossRefGoogle Scholar
  36. Kaar WE, Brink DL (1991) Summative analysis of 9 common North American woods. J Wood Chem Technol 11(4):479–494CrossRefGoogle Scholar
  37. Kaundun SS, Lebreton P, Bailly A (1998) Needle flavonoid variation in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) populations. Can J Bot 76(12):2076–2083Google Scholar
  38. Kebbi-Benkeder Z, Colin F, Dumarcay S, Gerardin P (2014) Quantification and characterization of knotwood extractives of 12 european softwood and hardwood species. Ann For Sci 72(2):277–284CrossRefGoogle Scholar
  39. Kennedy RW (1955) Fungicidal toxicity of certain extraneous components of Douglas fir heartwood. Dissertation, University of British ColumbiaGoogle Scholar
  40. Kong LS, Abrams SR, Owen SJ, Van Niejenhuis A, Von Aderkas P (2009) Dynamic changes in concentrations of auxin, cytokinin, aba and selected metabolites in multiple genotypes of Douglas-fir (pseudotsuga menziesii) during a growing season. Tree Physiol 29(2):183–190PubMedCrossRefGoogle Scholar
  41. Kong LS, von Aderkas P, Owen SJ, Jaquish B, Woods J, Abrams SR (2012) Effects of stem girdling on cone yield and endogenous phytohormones and metabolites in developing long shoots of Douglas-fir (pseudotsuga menziesii). New Forest 43(4):491–503CrossRefGoogle Scholar
  42. Krauze-Baranowska M, Sowinski P, Kawiak A, Sparzak B (2013) Flavonoids from Pseudotsuga menziesii. Z Naturforsch C 68(3–4):87–96PubMedCrossRefGoogle Scholar
  43. Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208PubMedCrossRefGoogle Scholar
  44. Kurth EF (1950) The composition of the wax in Douglas-fir bark. J Am Chem Soc 72(4):1685–1686CrossRefGoogle Scholar
  45. Kurth EF (1953) Chemicals from Douglas-fir bark. TAPPI 36(7):119A–122AGoogle Scholar
  46. Laver ML, Fang HHL (1989) Ferulic acid esters from bark of Pseudotsuga menziesii. J Agric Food Chem 37(1):114–116CrossRefGoogle Scholar
  47. Laver ML, Fang HH-L, Aft H (1971) The n-hexane-soluble components of pseudotsuga menziesii bark. Phytochemistry 10:3292–3294CrossRefGoogle Scholar
  48. Laver ML, Loveland PM, Chen CH, Fang HHL, Zerrudo JV, Liu YCL (1977) Chemical constituents of Douglas-fir bark: a review of more recent literature. Wood Sci 10(2):85–92Google Scholar
  49. Leach JM, Thakore AN (1976) Toxic constituents in mechanical pulping effluents. TAPPI 59(2):129–132Google Scholar
  50. Lehtinen KJ, Mattsson K, Tana J, Engstrom C, Lerche O, Hemming J (1999) Effects of wood-related sterols on the reproduction, egg survival, and offspring of Brown Trout (Salmo trutta lacustris l.). Ecotox Environ Safe 42(1):40–49CrossRefGoogle Scholar
  51. Leu SY, Zhu JY, Gleisner R, Sessions J, Marrs G (2013) Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. Biomass Bioenergy 59:393–401CrossRefGoogle Scholar
  52. Mahmood-Khan Z, Hall ER (2003) Occurrence and removal of plant sterols in pulp and paper mill effluents. J Environ Eng Sci 2(1):17–26CrossRefGoogle Scholar
  53. Mota FL, Queimada AJ, Pinho SP, Macedo EA (2008) Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res 47(15):5182–5189CrossRefGoogle Scholar
  54. Nwaneshiudu IC, Schwartz DT (2015) Rational design of polymer-based absorbents: application to the fermentation inhibitor furfural. Biotechnol Biofuels 8:72PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pan SB, Pu YQ, Foston M, Ragauskas AJ (2013) Compositional characterization and pyrolysis of loblolly pine and Douglas-fir bark. Bioenergy Res 6(1):24–34CrossRefGoogle Scholar
  56. Peng GM, Roberts JC (2000) Solubility and toxicity of resin acids. Water Res 34(10):2779–2785CrossRefGoogle Scholar
  57. Perlack R, Stokes B (2011) US billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oakridge National Laboratory, Oak RidgeGoogle Scholar
  58. Petersen JC, Hill NS (1991) Enzyme inhibition by Sericea Lespedeza Tannins and the use of supplements to restore activity. Crop Sci 31:827–832CrossRefGoogle Scholar
  59. Pew JC (1948) A flavonone from Douglas-fir heartwood. J Am Chem Soc 70(9):3031–3034PubMedCrossRefGoogle Scholar
  60. Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25(1):223–230CrossRefGoogle Scholar
  61. Redemann (1971) Extracting 4-p-tolylvaleric acid from Douglas fir. US Patent 3,631,098, 28 Dec 1971Google Scholar
  62. Robinson J, Keating JD, Mansfield SD, Saddler JN (2003) The fermentability of concentrated softwood-derived hemicellulose fractions with and without supplemental cellulose hydrolysates. Enzym Microb Tech 33(6):757–765CrossRefGoogle Scholar
  63. Rudloff E (1972) Chemosystematic studies in the genus Pseudotsuga. I. Leaf oil analysis of the coastal and rocky mountain varieties of the Douglas fir. Can J Bot 50(5):1025–1040CrossRefGoogle Scholar
  64. Sakai T, Maarse H, Kepner RE, Jennings WG, Longhurs WM (1967) Volatile components of Douglas fir needles. J Agric Food Chem 15(6):1070–1072CrossRefGoogle Scholar
  65. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240PubMedCrossRefGoogle Scholar
  66. Sithole B, Shirin S, Zhang X, Lapierre L, Pimentel J, Paice M (2010) Deresination options in sulphite pulping. Bioresources 5(1):187–205Google Scholar
  67. Stromvall AM, Petersson G (1992) Terpenes emitted to air from TMP and sulphite pulp mills. Holzforschung 46(2):99–102CrossRefGoogle Scholar
  68. Tesevic V, Milosavljevic S, Vajs V, Dordevic I, Sokovic M, Lavadinovic V, Novakovic M (2009) Chemical composition and antifungal activity of the essential oil of Douglas fir (Pseudosuga menziesii Mirb. Franco) from Serbia. J Serb Chem Soc 74(10):1035–1040CrossRefGoogle Scholar
  69. Turley DB, Chaudhry Q, Watkins RW, Clark JH, Deswarte FEI (2006) Chemical products from temperate forest tree species—developing strategies for exploitation. Ind Crop Prod 24(3):238–243CrossRefGoogle Scholar
  70. U.S.D.A. (2001) US forest facts and historical trendsGoogle Scholar
  71. Wagner MR, Clancy KM, Tinus RW (1989) Maturational variation in needle essential oils from Pseudotsuga menziesii, abies-concolor, and Picea engelmanii. Phytochemistry 28(3):765–770CrossRefGoogle Scholar
  72. Wang ZJ, Lan TQ, Zhu JY (2013) Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol Biofuels 6:9PubMedPubMedCentralCrossRefGoogle Scholar
  73. Zhang C, Zhu JY, Gleisner R, Sessions J (2012) Fractionation of forest residues of Douglas-fir for fermentable sugar production by sporl pretreatment. Bioenergy Res 5(4):978–988CrossRefGoogle Scholar
  74. Zhu JY, Chandra MS, Gu F, Gleisner R, Reiner R, Sessions J, Marrs G, Gao J, Anderson D (2015) Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour Technol 179:390–397PubMedCrossRefGoogle Scholar
  75. Zou JP, Cates RG (1995) Foliage constituents of Douglas-fir (Pseudotsuga menziesii (mirb) franco (pinaceae)—their seasonal-variation and potential roles in Douglas-fir resistance and silviculture management. J Chem Ecol 21(4):387–402PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations