Phytochemistry Reviews

, Volume 14, Issue 4, pp 691–711 | Cite as

Strigolactones: occurrence, structure, and biological activity in the rhizosphere

  • Sanja Ćavar
  • Binne Zwanenburg
  • Petr Tarkowski


Strigolactones are signaling molecules that play a role in host recognition by parasitic plants of the Striga, Orobanche and Phelipanche genera which are among the most detrimental weeds in agriculture. The same class of molecules is also involved in the establishment of the symbiosis of plants with arbuscular mycorrhizal fungi. In addition, strigolactones are being shown to be involved in an increasing number of physiological processes in plants, such as the regulation of plant architecture and the response to abiotic factors such as nutrient availability and light. Important advances in knowledge about the structure determination, occurrence, biological function and physiological and biochemical regulation of the strigolactones have been revised. This review presents the complete collection of available spectroscopic data of correct structures of strigolactones, the occurrence in plant kingdom, as well as germination and hyphal branching activities, that are of high importance to the scientific community that is investigating these novel plant hormones. Moreover, two new structures of strigolactone members are proposed.


Strigolactones Phytohormones Structure elucidation Seed germination Hyphal branching 



This work was supported by the grant LO1204 from the National Program of Sustainability I and OP ECOP grant CZ.1.07/2.4.00/30.0041 (POSTUP II) from the Ministry of Education Youth and Sports, Czech Republic.


  1. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Nat Acad Sci USA 108(50):20242–20247PubMedCentralPubMedGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827PubMedGoogle Scholar
  3. Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51(7):1104–1117PubMedCentralPubMedGoogle Scholar
  4. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351PubMedGoogle Scholar
  5. Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170(1):47–55PubMedGoogle Scholar
  6. Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48(3):221–227Google Scholar
  7. Bebawi FF, Eplee RE, Harris CE, Norris RS (1984) Longevity of witchweed (Striga asiatica) seed. Weed Sci 32(4):494–497Google Scholar
  8. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):1239–1247Google Scholar
  9. Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148(1):402–413PubMedCentralPubMedGoogle Scholar
  10. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: fore diverse than meets the eye, and the ecological tale of why. Bioscience 51(11):923–932Google Scholar
  11. Bouwmeester HJ, Matusova H, Sun ZK, Beale MH (2003) Secondary metabolite signaling in host–parasitic plant interactions. Curr Opin Plant Biol 6(4):358–364PubMedGoogle Scholar
  12. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12(5):224–230PubMedGoogle Scholar
  13. Boyer FD, de Saint Germain A, Pillot JP, Pouvreau JB, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau JM, Rameau C (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159(4):1524–1544PubMedCentralPubMedGoogle Scholar
  14. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6(1):18–28PubMedGoogle Scholar
  15. Brooks DW, Bevinakatti HS, Kennedy E, Hathaway J (1985) Practical total synthesis of (±)-strigol. J Org Chem 50(5):628–632Google Scholar
  16. Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host. In: Inderjit K, Einhellig FA (eds) A new dimensionin allelochemistry, insights into allelopathy, ACS Symposium Series, ACS Books, Washington, pp 158–168Google Scholar
  17. Cardoso C, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci 180(3):414–420PubMedGoogle Scholar
  18. Chen VX, Boyer FD, Rameau C, Retailleau P, Vors JP, Beau J-M (2010) Stereochemistry, total synthesis, and biological evaluation of the new plant hormone solanacol. Chem Eur J 16(47):13941–13945PubMedGoogle Scholar
  19. Chen VX, Boyer FD, Rameau C, Pillot J-P, Vors J-P, Beau J-M (2013) New synthesis of a-ring aromatic strigolactone analogues and their evaluation as plant hormones in pea (Pisum sativum). Chem Eur J 19(15):4849–4857PubMedGoogle Scholar
  20. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154(3753):1189–1190PubMedGoogle Scholar
  21. Cook CE, Whichard LP, Monroe WE, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Strigalutea). J Am Chem Soc 94(17):6198–6199Google Scholar
  22. Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen J-G (2013) A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci 14(4):7681–7701PubMedCentralPubMedGoogle Scholar
  23. Daws MI, Pritchard HW, Van Staden J (2008) Butenolide from plant-derived smoke functions as a strigolactone analogue: evidence from parasitic weed seed germination. S Afr J Bot 74(1):116–120Google Scholar
  24. de Saint GermainA, Bonhomme S, Boyer FD, Rameau C (2013a) Novel insights into strigolactone distribution and signaling. Cur Opin Plant Biol 16(5):583–589Google Scholar
  25. de Saint GermainA, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C (2013b) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol 163(2):1012–1025Google Scholar
  26. Delaux PM, Xie XN, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Becard G, Sejalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195(4):857–871PubMedGoogle Scholar
  27. Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14(7):364–372PubMedGoogle Scholar
  28. Erickson J, Schott D, Reverri T, Muhsin W, Ruttledge T (2001) GC-MS Analysis of hydrophobic root exudates of Sorghum and implications on the parasitic plant Striga asiatica. J Agric Food Chem 49(11):5537–5542PubMedGoogle Scholar
  29. Fernandez-Aparicio M, Yoneyama K, Rubiales D (2011) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21(1):55–61Google Scholar
  30. Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170(5):523–528PubMedGoogle Scholar
  31. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234(5):1073–1081PubMedGoogle Scholar
  32. Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111(5):769–779PubMedCentralPubMedGoogle Scholar
  33. Frischmuth K, Samson E, Kranz A, Welzel P, Meuer H, Sheldrick WS (1991) Routes to derivatives of strigol (the witchweed germination factor) modified in the 5-position. Tetrahedron 47(47):9793–9806Google Scholar
  34. Goldwasser Y, Yoneyama K, Xie XA, Yoneyama K (2008) Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55(1):21–28Google Scholar
  35. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194PubMedGoogle Scholar
  36. Grenz JH, Sauerborn J (2007) Mechanisms limiting the geographical range of the parasitic weed Orobanche crenata. Agric Ecosys Envirom 122(3):275–281Google Scholar
  37. Hauck C, Müller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139(4):474–478Google Scholar
  38. Hirayama K, Mori K (1999) Plant bioregulators. Part 5. Synthesis of (+)-strigol and (+)-orobanchol, the germination stimulants, and their stereoisomers by employing lipase-catalyzed asymmetric acetylation as the key step. Eur J Org Chem 9:2211–2217Google Scholar
  39. Hristeva T, Dekalska T, Denev I (2013) Structural and functional biodiversity of microbial communities in the rhizosphere of plants infected with broomrapes (Orobanchaceae). Biotechnol Biotechnolog Equip 27(5):4082–4086Google Scholar
  40. Jamil M, Charnikhova T, Cardoso C, Jamil K, Ueno K, Verstappen F, Asami T, Bouwmeester HJ (2011a) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51(4):373–385Google Scholar
  41. Jamil M, Rodenburg J, Charnikhova T, Bouwmeester HJ (2011b) Pre-attachment Strigahermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol 192(4):964–975PubMedGoogle Scholar
  42. Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ (2012) Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235(3):473–484PubMedCentralPubMedGoogle Scholar
  43. Jamil M, Van Mourik TA, Charnikhova T, Bouwmeester HJ (2013) Effect of diammonium phosphate application on strigolactone production and Striga hermonthica infection in three sorghum cultivars. Weed Res 53(2):121–130Google Scholar
  44. Kannan C, Zwanenburg B (2014) A novel concept for the control of parasitic weeds by decomposing germination stimulants prior to action. Crop Prot 61:11–15Google Scholar
  45. Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier J-P, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011a) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233(1):209–216PubMedGoogle Scholar
  46. Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011b) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62(8):2915–2924PubMedGoogle Scholar
  47. Kgosi RL, Zwanenburg B, Mwakaboko AS, Murdoch AJ (2012) Strigolactone analogues induce suicidal seed germination of Striga spp. in soil. Weed Res 52(3):197–203Google Scholar
  48. Kim HI, Xie XN, Kim HS, Chun JC, Yoneyama K, Nomura T, Takeuchi Y, Yoneyama K (2010) Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. J Pest Sci 35(3):344–347Google Scholar
  49. Kisugi T, Xie XN, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K (2013) Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry 87:60–64PubMedGoogle Scholar
  50. Kitahara S, Tashiro T, Sugimoto Y, Sasaki M, Takikawa H (2011) First synthesis of (±)-sorgomol, the germination stimulant for root parasitic weeds isolated from Sorghum bicolor. Tetrah Lett 52(6):724–726Google Scholar
  51. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester HJ, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in non-AM host Arabidopsis thaliana. Plant Physiol 155(2):974–987PubMedCentralPubMedGoogle Scholar
  52. Kohlen W, Charnikhova T, Bours R, López-Ráez JA, Bouwmeester H (2013) Tomato strigolactones: a more detailed look. Plant Signal Behav 8(1):124–130Google Scholar
  53. Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190(3):545–549PubMedGoogle Scholar
  54. Koltai H (2013) Strigolactone activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Ann Bot 112(2):409–415PubMedCentralPubMedGoogle Scholar
  55. Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61(6):1739–1749PubMedCentralPubMedGoogle Scholar
  56. Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V, Ben Dor B, Resnick N, Wininger S, Kapulnik Y (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168(16):993–1996Google Scholar
  57. Kondo Y, Tadokoro E, Matsuura M, Iwasaki K, Sugimoto Y, Miyake H, Takikawa H, Sasaki M (2007) Synthesis and seed germination stimulating activity of some imino analogs of strigolactones. Biosci Biotechnol Biochem 71(11):2781–2786PubMedGoogle Scholar
  58. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178(4):863–874PubMedGoogle Scholar
  59. López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187(2):343–354PubMedGoogle Scholar
  60. López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168(3):294–297PubMedGoogle Scholar
  61. Mangnus EM, Stommen PLA, Zwanenburg B (1992) A standardized bioassay for evaluation of potential germination stimulants for seeds of parasitic weeds. Plant Growth Regul 11(2):91–98Google Scholar
  62. Matsuura H, Ohashi K, Sasako H, Tagawa N, Takano Y, Ioka Y, Nabeta K, Yoshihara T (2008) Germination stimulant from root exudates of Vigna unguiculata. Plant Growth Regul 54(1):31–36Google Scholar
  63. Matusova R, van Mourik T, Bouwmeester HJ (2004) Changes in the sensitivity of parasitic weed seeds to germination stimulants. Seed Sci Res 14(4):335–344Google Scholar
  64. Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants ofthe plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139(2):920–934PubMedCentralPubMedGoogle Scholar
  65. Mori K, Matsui J (1997) Synthesis of (3aR,8S,8bS,2′R)-(+)-sorgolactone and its stereoisomers, the germination stimulant from Sorghum bicolor. Tetrah Lett 38(45):7891–7892Google Scholar
  66. Müller S, Hauck C, Schildknecht H (1992) Germination stimulants produced by Vigna unguiculata Walp cv saunders upright. J Plant Growth Regul 11(2):77–84Google Scholar
  67. Nomura S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y (2013) Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep 32(6):829–838PubMedGoogle Scholar
  68. Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59(1):67–74PubMedGoogle Scholar
  69. Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65(5):453–459PubMedGoogle Scholar
  70. Parker C (2012) Parasitic weeds: a world challenge. Weed Sci 60(2):269–276Google Scholar
  71. Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16(8):442–450PubMedGoogle Scholar
  72. Pouvreau J-B, Gaudin Z, Auger B, Lechat M-M, Gauthier M, Delavault P, Simier P (2013) A high-throughput seed germination assay for root parasitic plants. Plant Meth 9(32):1–11Google Scholar
  73. Proust H, Hoffmann B, Xie XN, Yoneyama K, Schaefer DG, Yoneyama K, Nogue F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138(8):1531–1539PubMedGoogle Scholar
  74. Quilambo OA (2003) The vesicular-arbuscular mycorrhizal symbiosis. Afr J Biotechnol 2(12):539–546Google Scholar
  75. Rameau C (2010) Strigolactones, a novel class of plant hormone controlling shoot branching. C R Biol 333(4):344–349PubMedGoogle Scholar
  76. Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46(7):617–626PubMedGoogle Scholar
  77. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158(4):1976–1987PubMedCentralPubMedGoogle Scholar
  78. Rasmussen A, Depuydt S, Goormachtig S, Geelen D (2013) Strigolactones fine-tune the root system. Planta 238(4):615–626PubMedGoogle Scholar
  79. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155(2):721–734PubMedCentralPubMedGoogle Scholar
  80. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18(2):72–83PubMedGoogle Scholar
  81. Sato D, Awad AA, Chae SH, Yokota T, Sugimoto Y, Takeuchi Y, Yoneyama K (2003) Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 51(5):1162–1168PubMedGoogle Scholar
  82. Sato D, Awad AA, Takeuchi Y, Yoneyama K (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69(1):98–102PubMedGoogle Scholar
  83. Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J 76(1):1–9PubMedGoogle Scholar
  84. Schachtschabel D, Boland W (2009) Strigolactones: the first members of a new family of “shoot branching hormones” in plants? ChemBioChem 10(2):221–223PubMedGoogle Scholar
  85. Seto Y, Kameoka H, Yamaguchi S, Kyozuka Y (2012) Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol 53(11):1843–1853PubMedGoogle Scholar
  86. Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111(4):1640–1645PubMedCentralPubMedGoogle Scholar
  87. Siame BA, Weerasuriya Y, Wood K, Ejeta G, Butler LG (1993) Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem 41(9):1486–1491Google Scholar
  88. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057PubMedCentralPubMedGoogle Scholar
  89. Song WJ, Zhou WJ, Jin ZL, Cao DD, Joel DM, Takeuchi Y, Yoneyama K (2005) Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Res 45(6):467–476Google Scholar
  90. Sugimoto Y, Ueyama T (2008) Production of (+)-5-deoxystrigol by Lotus japonicus root culture. Phytochemistry 69(1):212–217PubMedGoogle Scholar
  91. Sugimoto Y, Wigchert SCM, Thuring JWJF, Zwanenburg B (1997) The first total synthesis of the naturally occurring germination stimulant sorgolactone. Tetrah Lett 38(13):2321–2324Google Scholar
  92. Sugimoto Y, Wigchert SCM, Thuring JWJF, Zwanenburg B (1998) Synthesis of all eight stereoisomers of the germination stimulant sorgolactone. J Org Chem 63(4):1259–1267Google Scholar
  93. Tsuchiya Y, McCourt P (2009) Strigolactones: a new hormone with a past. Cur Opin Plant Biol 12(5):556–561Google Scholar
  94. Tsuchiya Y, McCourt P (2012) Strigolactones as small molecule communicators. Mol Biosys 8(2):464–469Google Scholar
  95. Uehara K, Ashikari M (2013) New biosynthetic pathway of carlactone, a strigolactone-like compound. New discovery by fusion of plant molecular biology and biochemistry. Kagaku Seibutsu 51(5):277–279Google Scholar
  96. Ueno K, Fujiwara M, Nomura S, Mizutani M, Sasaki M, Takikawa H, Sugimoto Y (2011a) Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds. J Agric Food Chem 59(6):9226–9231PubMedGoogle Scholar
  97. Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011b) Ent-2′-epiorobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59(19):10485–10490PubMedGoogle Scholar
  98. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–201PubMedGoogle Scholar
  99. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51(7):1118–1126PubMedCentralPubMedGoogle Scholar
  100. Vurro M, Yoneyama K (2012) Strigolactones-intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application. Pest Manag Sci 68(5):664–668PubMedGoogle Scholar
  101. Welzel P, Röhrig S, Milkova Z (1999) Strigol-type germination stimulants: the C-2′ configuration problem. Chem Commun 20:2017–2022Google Scholar
  102. Whitney PJ (1978) Broomrape (Orobanche) seed germination inhibitors from plant roots. Ann Appl Biol 89(3):475–478Google Scholar
  103. Wigchert SCM, Zwanenburg B (1999) A critical account on the inception of Striga seed germination. J Agric Food Chem 47(4):1320–1325Google Scholar
  104. Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for rootparasitic weeds, produced by tobacco. J Agric Food Chem 55(20):8067–8072PubMedGoogle Scholar
  105. Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008a) Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrah Lett 49(13):2066–2068Google Scholar
  106. Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K (2008b) Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 69:427–431PubMedGoogle Scholar
  107. Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K (2009a) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70:211–215PubMedGoogle Scholar
  108. Xie X, Yoneyama K, Kurita JY, Harada Y, Yamada Y, Takeuchi Y, Yoneyama K (2009b) 7-Oxoorobanchyl acetate and 7-oxoorobanchol as germination stimulants for root parasitic plants from flax (Linum usitatissimum). Bio Biotechnol Biochem 73(6):1367–1370Google Scholar
  109. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Ann Rev Phytopathol 48:93–117Google Scholar
  110. Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashin H, Yokota T, Nomura T, Yoneyama K (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6(1):153–163PubMedCentralPubMedGoogle Scholar
  111. Yasuda N, Sugimoto Y, Kato M, Inanaga S, Yoneyama K (2003) (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62:1115–1119PubMedGoogle Scholar
  112. Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973Google Scholar
  113. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1):125–132PubMedGoogle Scholar
  114. Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225(4):1031–1038PubMedGoogle Scholar
  115. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179(2):484–494PubMedGoogle Scholar
  116. Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 65(5):447–470Google Scholar
  117. Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51(7):1095–1103PubMedCentralPubMedGoogle Scholar
  118. Yoneyama K, Xie X, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2011) Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul 65(3):495–504Google Scholar
  119. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactones production and exudation? Planta 235(6):1197–1207PubMedCentralPubMedGoogle Scholar
  120. Yoneyama K, Ruyter-Spira C, Bouwmeester H (2013) Induction on germination. In: Joel D, Gressel J, Musselman LJ (eds) Root parasitic Orobanchaceae: parasitic mechanisms and control strategies. Springer, Heidelberg, pp 167–193Google Scholar
  121. Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscularmycorrhizal symbiosis. New Phytol 196(4):1208–1216PubMedGoogle Scholar
  122. Zwanenburg B, Pospisil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6(1):38–62PubMedGoogle Scholar
  123. Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signaling molecules in parasitic weed germination. Pest Manag Sci 65(5):478–491PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sanja Ćavar
    • 1
    • 2
  • Binne Zwanenburg
    • 1
    • 3
  • Petr Tarkowski
    • 1
  1. 1.Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of SarajevoSarajevoBosnia and Herzegovina
  3. 3.Department of Organic Chemistry, Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations