Advertisement

Phytochemistry Reviews

, Volume 14, Issue 1, pp 51–80 | Cite as

Major secondary metabolites of Iris spp.

  • Wirginia Kukula-Koch
  • Elwira Sieniawska
  • Jarosław Widelski
  • Otgonbataar Urjin
  • Paweł Głowniak
  • Krystyna Skalicka-Woźniak
Article

Abstract

Roots and rhizomes of many Iris species are well known as precious sources of isoflavones. They have been used in traditional medicine to treat respiratory disorders and decrease smooth muscles activity. Recent advances in their phytochemistry and phytomedicine have revealed potent anticholinesterase, antineoplastic and anti-plasmodial activities of iris constituents. Furthermore, decoctions from rhizomes have been successfully used among patients with hormone-related diseases. Except for isoflavones, the main chemical components of Iris are xanthones, quinones, flavons, terpenes and simple phenolics, with multiple biological activities. This contribution reviews the research progress of the past 30 years relating to the chemistry, recovery of secondary metabolites, their separation by means of TLC and HPLC techniques and spectral data of the most common chemical components of iris extracts. Special attention is paid to ultraviolet spectroscopy, infrared spectroscopy, LC–mass spectroscopy and nuclear magnetic resonance analyses of isoflavones, flavons, xanthones and terpenes.

Keywords

Isolation Iris spp. Spectral analysis Structure elucidation 

Notes

Acknowledgments

Mrs. Anna Misiuna, Mrs. Maria Grudzinska and Prof. Dr. Yoshinori Asakawa are thanked for constructive feed-back during the writing process.

References

  1. Abe F, Chen RF, Yamauchi T (1991) Iridals from Belamcanda chinensis and Iris japonica. Phytochemistry 30(10):3379–3382CrossRefGoogle Scholar
  2. Al-Khalil S, Al-Eisawi D, Masaya A et al (1994) New isoflavones from Iris nigricans. J Nat Prod 57:201–205CrossRefGoogle Scholar
  3. Basser K, Demirci B, Orhan IE et al (2011) Composition of volatiles from three Iris species of Turkey. J Essent Oil Res 23(4):66–71CrossRefGoogle Scholar
  4. Baytop T (1984) Therapy with medicinal plant in Turkey. Instanbul University Press, IstanbulGoogle Scholar
  5. Benoit-Vical F, Imbert C, Bonfils JP et al (2003) Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. Phytochemistry 62:747–751CrossRefPubMedGoogle Scholar
  6. Bonfils JP, Pinguet F, Culine S et al (2001) Cytotoxicity of iridals, triterpenoids from Iris, on human tumor cell lines A2780 and K562. Planta Med 67:79–81CrossRefPubMedGoogle Scholar
  7. Deng GB, Zhang HB, Xue HF et al (2009) Chemical composition and biological activities of essential oil from the rhizomes from the Iris bulleyana. Agric Sci China 8:691–696CrossRefGoogle Scholar
  8. Fabre N, Rustan I, Hoffmann E et al (2001) Determination of flavone, flavonol, and flavone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12:707–715CrossRefPubMedGoogle Scholar
  9. Fang R, Houghton PJ, Luo C et al (2007) Isolation and structure determination of triterpenes from Iris tectorum. Phytochemistry 68:1242–1247CrossRefPubMedGoogle Scholar
  10. Grycova L, Dostal J, Marek R (2007) Quaternary protoberberine alkaloids. Phytochemistry 68:150–175CrossRefPubMedGoogle Scholar
  11. Hacibekiroglu I, Kolak U (2011) Antioxidant and anticholinesterase constituents from the petroleum ether and chloroform extracts of Iris suaveolens. Phytother Res 25:522–529CrossRefPubMedGoogle Scholar
  12. Hideyuki I, Yoko M, Takshi Y (1995) New piscicidal triterpenes from Iris germanica. Chem Pharm Bull 43:1260–1262CrossRefGoogle Scholar
  13. Huang L, Ma WH, Liu YZ et al (2011) Irisdichotins A–C, three new flavonoid glycosides from the rhizomes of Iris dichotoma Pall. J Asian Nat Prod Res 13:744–748CrossRefPubMedGoogle Scholar
  14. Huang L, Ma W, Liu Y et al (2012) Three new phenol compounds from Iris dichotoma Pall. Helv Chim Acta 95:1033–1036CrossRefGoogle Scholar
  15. Ibrahim S, Mohamed G, Al-Musayeib NM (2012) New constituents from the rhizomes of Egyptian Iris germanica L. Molecules 17:2587–2589CrossRefPubMedGoogle Scholar
  16. Jaenicke L, Marner FJ (1990) The irones and their origin. Pure Appl Chem 62:1365–1368CrossRefGoogle Scholar
  17. Ma Y, Li H, Lin B et al (2012) C-glycosylflavones from the leaves of Iris tectorum Maxim. Acta Pharm Sin B 2:598–601CrossRefGoogle Scholar
  18. Machalska A, Skalicka-Woźniak K, Widelski J et al (2008) Screening for phenolic acids in five species of iris collected in Mongolia. Acta Chromatogr 20:259–267CrossRefGoogle Scholar
  19. Marginean I, Kelly RT, Moore RJ et al (2009) Selection of the optimum electrospray voltage for gradient elution LC–MS mesurments. J Am Soc Mass Spectrom 20:682–688CrossRefPubMedCentralPubMedGoogle Scholar
  20. Marner FJ, Karimi-Nejad Y, Jaenicke L et al (1990) Structure determination of a new spirobicyclic triterpenoid from Iris foetidissima. Helv Chim Acta 73:433–438CrossRefGoogle Scholar
  21. Miyake Y, Ito H, Yoshida T (1997) Identification of iridals as piscicidal components of Iridaceous plants and their conformations associated with CD spectra. Can J Chem 75:734–741CrossRefGoogle Scholar
  22. Mizuno T, Okuyama Y, Iwashina T (2012) Phenolic compounds from Iris rossi and their chemotaxonomic and systhaciematic significance. Biochem Sys Ecol 44:157–160CrossRefGoogle Scholar
  23. Mosihuzzman M, Naheed S, Hareem S, Talib S, Abbas G, Khan SN, Choudhary MI, Sener B, Tareen RB, Israr M (2013) Studies on α-glucosidase inhibition and anti-glycation potential of Iris loczyi and Iris unguicularis. Life Sci 92:187–192CrossRefPubMedGoogle Scholar
  24. Orhan I, Nasim S, Tener B et al (2003) Two isoflavones ad bioactivity spectrum of crude extracts of Iris germanica rhizomes. Phytother Res 17:575–577CrossRefPubMedGoogle Scholar
  25. Qin MJ, Rong L, Xin W et al (2007) New isoflavonoid glycosides from the rhizomes of Iris leptophylla Lingelsh. J Integr Plant Biol 49:213–217CrossRefGoogle Scholar
  26. Rahman AU, Nasim S, Baig I et al (2003a) Antiinflamatory isoflavonoids from rhizomes of Iris germanica. J Ethnopharmacol 86:177–180CrossRefPubMedGoogle Scholar
  27. Rahman AU, Nasim S, Baig I et al (2003b) Isoflavonoid glycosides from the rhizomes of Iris germanica. Helv Chim Acta 86:3354–3362CrossRefGoogle Scholar
  28. Ramtin M, Pahlaviani MRMK, Massiha A et al (2013) Comparative evaluation of the antibacterial activitites of essential oils of Iris pseudacorus and Urtica dioica native to north Iran. J Pure Appl Microbiol 7:1065–1070Google Scholar
  29. Reynolds WF, Enriquez RG (2002) Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. J Nat Prod 65:221–244CrossRefPubMedGoogle Scholar
  30. Roger B, Jeannot V, Fernandez X et al (2012) Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida Lam. Resinoids from Morocco. Phytochem Anal 23:450–455CrossRefPubMedGoogle Scholar
  31. Schu P, Hong JL, Wu G et al (2010) Analysis of flavonoids and phenolic acids in Iris tectorum by HPLC–DAD–ESI–MSn. Chin J Nat Med 8:202–207CrossRefGoogle Scholar
  32. Schütz C, Quitschau M, Hamburger M et al (2011) Profiling of isoflavonoids in Iris germanica rhizome extracts by microprobe NMR and HPLC–PDA–MS analysis. Fitoterapia 82:1021–1026CrossRefPubMedGoogle Scholar
  33. Seki K, Tomihari T, Haga K et al (1994) Iristectorene B, a monocyclic triterpene ester from Iris tectorum. Phytochemistry 36:433–438CrossRefGoogle Scholar
  34. Seki K, Haga K, Kaneko R (1995) Phenols and a dioxotetrahydrodibenzofuran from seeds of Iris pallasii. Phytochemistry 38:965–973CrossRefGoogle Scholar
  35. Shen WJ, Qin MJ, Shu P et al (2008) Two new C-glycosylflavones from the leaves of Iris lacteal var. chinensis. Chin Chem Lett 19:821–824CrossRefGoogle Scholar
  36. Takahashi K, Hoshino Y, Suzuki S et al (2000) Iridals from Iris tectorum and Belamcanda chinensis. Phytochemistry 53:925–929CrossRefPubMedGoogle Scholar
  37. Takahashi K, Suzuki S, Hano Y et al (2002) Protein kinase C activation by iridal type terpenoids. Biol Pharm Bull 25:432–436CrossRefPubMedGoogle Scholar
  38. Veitch NC, Sutton PSE, Kite GC et al (2003) Six new isoflavones and a 5-deoxyflavonol glycoside from the leaves of Ateleia herbert-smithii. J Nat Prod 66:210–216CrossRefPubMedGoogle Scholar
  39. Waridel P, Wolfender JL, Ndjoko K et al (2001) Evaluation of quadrupole time-of-flight tandemmass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers. J Chromatogr A 926:29–41CrossRefPubMedGoogle Scholar
  40. Wei Y, Shu P, Honga J et al (2012) Qualitative and quantitative evaluation of phenolic compounds in Iris dichotoma Pall. Phytochem Anal 23:197–207CrossRefPubMedGoogle Scholar
  41. Wollenweber E, Stevens JF, Klimo K et al (2003) Cancer chemopreventive in vitro activities of isoflavones isolated from Iris germanica. Planta Med 69:15–20CrossRefPubMedGoogle Scholar
  42. Wu ZF, Xiong CM (1990) Comparison of the pharmacological effects of Belamcada chinensis (L.) DC., Iris dichotoma Pall. and Iris tectorium Maxim. Pharmacol Clin Chin Mater Med 6:28–30Google Scholar
  43. Wuttke W, Jarry H, Popp M, Christoffel V, Spengler B (2002) Use of extracts and preparation from iris plants and tectorigenin as medicaments. US Patent 20,040,176,310Google Scholar
  44. Yabuya T (1991) High-performance liquid chromatographic analysis of anthocyanins in Japanese garden iris and its wild forms. Euphytica 52:215–219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wirginia Kukula-Koch
    • 1
  • Elwira Sieniawska
    • 1
  • Jarosław Widelski
    • 1
  • Otgonbataar Urjin
    • 2
  • Paweł Głowniak
    • 1
  • Krystyna Skalicka-Woźniak
    • 1
  1. 1.Department of Pharmacognosy with Medicinal Plant UnitMedical University of LublinLublinPoland
  2. 2.School of PharmacyHealth Sciences University of MongoliaUlaanbaatarMongolia

Personalised recommendations