Phytochemistry Reviews

, Volume 13, Issue 3, pp 643–651 | Cite as

Medicinal herbs and antioxidants: potential of Rhinacanthus nasutus for disease treatment?

  • James M. Brimson
  • Tewin TencomnaoEmail author


This review covers the biological activities of the medicinal herb, Rhinacanthus nasutus, which is part of the Acanthaceae family. This herb and the compounds isolated from it have the potential to be used for the treatment of a vast array of diseases, including neurological, (such as Alzheimer’s, Parkinson’s and depression), viral and bacterial infections (such as hepatitis and herpes virus), skin disorders, and control sugar levels in diabetic patients. Many diseases involve oxidative stress, particularly neurological diseases, where oxidative stress leads to neurodegeneration. Medicinal herbs such as R. nasutus appear to be effective at protecting against such oxidative stress. Herein we discuss the potential mechanisms by which they have their antioxidant effects, and their effects on other cellular pathways, which are involved in various disease states.


Oxidative stress Reactive oxygen species Traditional medicine Natural products 



Aflatoxin B1


Herpes simplex virus




Inducible nitric oxide synthase






Nitric oxide


Plasma membrane


Prostaglandin E2


Reduced glutathione


Superoxide dismutase




Varicella-zoster virus



This work was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (AS562A), Integrated Innovation Academic Center (IIAC) Chulalongkorn University Centenary Academic Development Project (CU56-AS01). James M. Brimson received the fellowship from the Kanjanapisek Chalermprakiat Endowment Fund, Chulalongkorn University. The photographs of the herbs were provided by Miss Varaporn Rakkhithawatthana (Ph.D. program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University).


  1. Aragão GF, Carneiro LMV, Juniora PF et al (2006) A possible mechanism for anxiolytic and antidepressant effects of alpha- and beta-amyrin from Protium heptaphyllum (Aubl.) March. Pharmacol Biochem Behav 85:827–834. doi: 10.1016/j.pbb.2006.11.019 PubMedCrossRefGoogle Scholar
  2. Barja G (2002) Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res Rev 1:397–411PubMedCrossRefGoogle Scholar
  3. Behl C, Davis J, Cole G, Schubert D (1992) Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem Biophys Res Commun 186:944–950PubMedCrossRefGoogle Scholar
  4. Behl C, Skutella T, Lezoualc’h F et al (1997a) Neuroprotection against oxidative stress by estrogens: structure–activity relationship. Mol Pharmacol 51:535–541PubMedGoogle Scholar
  5. Behl C, Trapp T, Skutella T et al (1997b) Protection against oxidative stress-induced neuronal cell death—a novel role for RU486. Eur J Neurosci 9:912–920PubMedCrossRefGoogle Scholar
  6. Bernotti S, Seidman E, Sinnett D et al (2003) Inflammatory reaction without endogenous antioxidant response in Caco-2 cells exposed to iron/ascorbate-mediated lipid peroxidation. Am J Physiol Gastrointest Liver Physiol 285:G898–G906. doi: 10.1152/ajpgi.00042.2003 PubMedGoogle Scholar
  7. Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Investig Dermatol 126:2565–2575. doi: 10.1038/sj.jid.5700340 PubMedCrossRefGoogle Scholar
  8. Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826. doi: 10.1016/j.mad.2004.07.009 PubMedCrossRefGoogle Scholar
  9. Brimson CH, Nigam Y (2013) The role of oxygen-associated therapies for the healing of chronic wounds, particularly in patients with diabetes. J Eur Acad Dermatol Venereol 4:411–418. doi: 10.1111/j.1468-3083.2012.04650.x CrossRefGoogle Scholar
  10. Brimson JM, Tencomnao T (2011) Rhinacanthus nasutus protects cultured neuronal cells against hypoxia induced cell death. Mol Basel Switz 16:6322–6338Google Scholar
  11. Brimson JM, Brimson SJ, Brimson CA et al (2012) Rhinacanthus nasutus extracts prevent glutamate and amyloid-β neurotoxicity in HT-22 Mouse hippocampal cells: possible active compounds include lupeol, stigmasterol and β-sitosterol. Int J Mol Sci 13:5074–5097. doi: 10.3390/ijms13045074 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45:8–15PubMedCrossRefGoogle Scholar
  13. Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutrit 70:491S–499SPubMedGoogle Scholar
  14. Devasagayam TPA, Tilak JC, Boloor KK et al (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804PubMedGoogle Scholar
  15. Fukui M, Song J-H, Choi J et al (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 617:1–11. doi: 10.1016/j.ejphar.2009.06.059 PubMedCrossRefGoogle Scholar
  16. Gallo MBC, Sarachine MJ (2009) Biological activities of lupeol. Int J Biomed Pharm Sci 3:46–66Google Scholar
  17. Gawryluk JW, Wang J-F, Andreazza AC et al (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130PubMedCrossRefGoogle Scholar
  18. Gotoh A, Sakaeda T, Kimura T et al (2004) Antiproliferative activity of Rhinacanthus nasutus (L.) Kurz extracts and the active moiety, Rhinacanthin C. Biol Pharm Bull 27:1070–1074PubMedCrossRefGoogle Scholar
  19. Gredilla R, Barja G (2005) Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146:3713–3717. doi: 10.1210/en.2005-0378 PubMedCrossRefGoogle Scholar
  20. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  21. Harman D, Ph D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  22. He K, Chan C-B, Liu X et al (2011) Identification of a molecular activator for insulin receptor with potent anti-diabetic effects. J Biol chem 286:37379–37388. doi: 10.1074/jbc.M111.247387 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21:569–576. doi: 10.1016/j.tcb.2011.06.008 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heo HJ, Lee CY (2004) Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52:7514–7517. doi: 10.1021/jf049243r PubMedCrossRefGoogle Scholar
  25. Horii H, Ueda J-Y, Tamura M, et al. (2011) New biological activity of Rhinacanthus nasutus extracts. In vivo (Athens, Greece). 25:367–373Google Scholar
  26. Howes RM (2006) The free radical fantasy: a panoply of paradoxes. Ann NY Acad Sci 1067:22–26. doi: 10.1196/annals.1354.004 PubMedCrossRefGoogle Scholar
  27. Hughs RE (1964) Reduction of dehydroascorbic acid by animal tissues. Nature 203:1068–1069CrossRefGoogle Scholar
  28. Ishige K, Chen Q, Sagara Y, Schubert D (2001) The activation of dopamine D4 receptors inhibits oxidative stress-induced nerve cell death. J Neurosci 21:6069–6076PubMedGoogle Scholar
  29. Jamaluddin F, Mohamed S, Lajis N (1994) Hypoglycaemic effect of Parkia speciosa seeds due to the synergistic action of -sitosterol and stigmasterol. Food Chem 49:339–345CrossRefGoogle Scholar
  30. Kaewthawee N, Brimson S (2013) The effects of ursolic acid on cytokine production via the mapk pathways in leukemic T-cells. Exp Clin Sci 12:102–114Google Scholar
  31. Kamaraj C, Rahuman AA, Bagavan A et al (2010) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412PubMedCrossRefGoogle Scholar
  32. Kamat JP, Ghosh a, Devasagayam TP (2000) Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol Cell Biochem 209:47–53PubMedCrossRefGoogle Scholar
  33. Karihtala P, Kauppila S, Puistola U, Jukkola-Vuorinen A (2011) Divergent behaviour of oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (HNE) in breast carcinogenesis. Histopathology 58:854–862. doi: 10.1111/j.1365-2559.2011.03835.x PubMedCrossRefGoogle Scholar
  34. Kernan MR, Sendl A, Chen JL et al (1997) Two new lignans with activity against influenza virus from the medicinal plant Rhinacanthus nasutus. J Nat Prod 60:635–637PubMedCrossRefGoogle Scholar
  35. Kodama O, Ichikawa H, Akatsuka T et al (1993) Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod 56:292–294PubMedCrossRefGoogle Scholar
  36. Kongkathip N, Luangkamin S, Kongkathip B et al (2004) Synthesis of novel rhinacanthins and related anticancer naphthoquinone esters. J Med Chem 47:4427–4438. doi: 10.1021/jm030323g PubMedCrossRefGoogle Scholar
  37. Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. Sci World J 9:1233–1241. doi: 10.1100/tsw.2009.137 CrossRefGoogle Scholar
  38. Mancino R, Di Pierro D, Varesi C et al (2011) Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol Vis 17:1298–1304PubMedCentralPubMedGoogle Scholar
  39. Marcil V, Lavoie JC, Emonnot L et al (2011) Analysis of the effects of iron and vitamin C co-supplementation on oxidative damage, antioxidant response and inflammation in THP-1 macrophages. Clin Biochem 44:873–883. doi: 10.1016/j.clinbiochem.2011.04.012 PubMedCrossRefGoogle Scholar
  40. Mayne ST, Handelman GJ, Beecher G (1996) Beta-carotene and lung cancer promotion in heavy smokers—a plausible relationship? J Natl Cancer Inst 88:1513–1515PubMedCrossRefGoogle Scholar
  41. Merry BJ (2004) Oxidative stress and mitochondrial function with aging—the effects of calorie restriction. Aging Cell 3:7–12. doi: 10.1046/j.1474-9728.2003.00074.x PubMedCrossRefGoogle Scholar
  42. Moinuddin G, Devi K, Khajuria DK (2010) Evaluation of the anti-depressant activity of Myristica fragrans (Nutmeg) in male rats. Avicenna J Phytomed 2:72–78Google Scholar
  43. Murphy TH, Miyamoto M, Sastre A et al (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558PubMedCrossRefGoogle Scholar
  44. Nadu T (2009) Antibacterial and antifungal evaluation of the leaves of Rhinacanthus nasutus Linn. Int J Chem Tech Res 1:574–576Google Scholar
  45. Nirmaladevi R, Padma P (2010) Analyses of the methanolic extract of the leaves of Rhinacanthus nasutus. J Med Plants Res 4:1554–1560Google Scholar
  46. Palasuwan A, Soogarun S (2005) Inhibition of heinz body induction in an in vitro model and total antioxidant activity of medicinal thai plants. Asian Pac J Cancer Prev 6:458–463PubMedGoogle Scholar
  47. Park S, Sim Y, Han P et al (2010) Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica Var. saboten. Exp Neurobiol 19:30–38PubMedCentralPubMedCrossRefGoogle Scholar
  48. Patel VP, Chu CT (2011) Review article nuclear transport, oxidative stress, and neurodegeneration. Int J clin Exp Pathol 4:215–229PubMedCentralPubMedGoogle Scholar
  49. Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845. doi: 10.1038/35002708 PubMedCrossRefGoogle Scholar
  50. Preetha SP, Kanniappan M, Selvakumar E et al (2006) Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats. Comp Biochem Physiol C Toxicol Pharmacol 143:333–339. doi: 10.1016/j.cbpc.2006.03.008 PubMedCrossRefGoogle Scholar
  51. Punturee K, Wild CP, Vinitketkumneun U (2004) Thai medicinal plants modulate nitric oxide and tumor necrosis factor-alpha in J774.2 mouse macrophages. J Ethnopharmacol 95:183–189PubMedCrossRefGoogle Scholar
  52. Punturee K, Wild CP, Kasinrerk W, Vinitketkumnuen U (2005) Immunomodulatory activities of Centella asiatica and Rhinacanthus nasutus extracts. Asian Pac J Cancer Prev APJCP 6:396–400Google Scholar
  53. Rao MU (2010) Rhinacanthus nasutus (linn.) kurz: a comprehensive review. Extraction 10:11Google Scholar
  54. Rao P, Naidu M (2010) Anti diabetic effect of Rhinacanthus nasutus leaf extract in streptozotocin induced diabetic rats. Libyan Agric Res Center J Int 5(1):310–312Google Scholar
  55. Rao PV, Sujana P, Vijayakanth T, Naidu MD (2012) Rhinacanthus nasutus—its protective role in oxidative stress and antioxidant status in streptozotocin induced diabetic rats. Asian Pac J Trop Dis 2:327–330. doi: 10.1016/S2222-1808(12)60071-1 CrossRefGoogle Scholar
  56. Sastre J, Frederico P, Viña J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49:427–435PubMedCrossRefGoogle Scholar
  57. Scholz RW, Graham K, Gumpricht E, Reddy CC (1989) Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation. Ann NY Acad Sci 570:514–517. doi: 10.1111/j.1749-6632.1989.tb14973.x CrossRefGoogle Scholar
  58. Schubert D, Kimura H, Maher P (1992) Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci USA 89:8264–8267PubMedCentralPubMedCrossRefGoogle Scholar
  59. Sendl A, Chen JL, Jolad SD et al (1996) Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus. J Nat Prod 59:808–811PubMedCrossRefGoogle Scholar
  60. Shyamal S, Latha PG, Suja SR et al (2010) Hepatoprotective effect of three herbal extracts on aflatoxin B1-intoxicated rat liver. Singap Med J 51:326–331Google Scholar
  61. Singh SN, Vats P, Suri S et al (2001) Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 76:269–277PubMedCrossRefGoogle Scholar
  62. Siripong P, Kanokmedakul K, Piyaviriyagul S et al (2006) Antiproliferative naphthoquinone esters from Rhinacanthus nasutus kurz. roots on various cancer cells. J Tradit Med 23:166–172Google Scholar
  63. Siripong P, Hahnvajanawong C, Yahuafai J et al (2009) Induction of apoptosis by rhinacanthone isolated from Rhinacanthus nasutus roots in human cervical carcinoma cells. Biol Pharm Bull 32:1251–1260PubMedCrossRefGoogle Scholar
  64. Siriwatanametanon N, Fiebich BL, Efferth T et al (2010) Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities. J Ethnopharmacol 130:196–207PubMedCrossRefGoogle Scholar
  65. Subarnas A, Oshima Y, Sidik Y, Ohizumi Y (1992) An antidepressant principle of Lobelia inflata L. (Campanulaceae). J Pharm Sci 81:620–621PubMedCrossRefGoogle Scholar
  66. Subarnas A, Tadano T, Nakahata N et al (1993a) A possible mechanism of antidepressant activity of beta-amyrin palmitate isolated from Lobelia inflata leaves in the forced swimming test. Life Sci 52:289–296PubMedCrossRefGoogle Scholar
  67. Subarnas A, Tadano T, Oshima Y et al (1993b) Pharmacological properties of beta-amyrin palmitate, a novel centrally acting compound, isolated from Lobelia inflata leaves. J Pharm Pharmacol 45:545–550PubMedCrossRefGoogle Scholar
  68. Tewtrakul S, Tansakul P, Panichayupakaranant P (2009a) Effects of rhinacanthins from Rhinacanthus nasutus on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha releases using RAW264.7 macrophage cells. Phytomedicine 16:581–585PubMedCrossRefGoogle Scholar
  69. Tewtrakul S, Tansakul P, Panichayupakaranant P (2009b) Anti-allergic principles of Rhinacanthus nasutus leaves. Phytomed Int J Phytotherap Phytopharmacol 16:929–934. doi: 10.1016/j.phymed.2009.03.010 Google Scholar
  70. Thongrakard V, Tencomnao T (2010) Modulatory effects of Thai medicinal plant extract on proinflammatory cytokines-induced apoptosis in human keratinocyte HaCaT cells. Afr J Biotechnol 9:4999–5003Google Scholar
  71. Thongrakard V, Ruangrungsi N, Ekkapongpisit M (2013) Protection from UVB toxicity in human keratinocytes by thailand native herbs extracts. Photochem Photobiol. doi:  10.1111/php.12153
  72. Visweswara Rao P, Madhavi K, Dhananjaya Naidu M, Gan SH (2013) Rhinacanthus nasutus ameliorates cytosolic and mitochondrial enzyme levels in streptozotocin-induced diabetic rats. Evidence Based Complement Altern Med 2013:486047. doi: 10.1155/2013/486047 Google Scholar
  73. Wu TS, Tien H-J, Yeh M-Y, Lee K-H (1988) Isolation and cytotoxicity of rhinacanthin-A and -B, two naphthoquinones from Rhinacanthus nasutus. Phytochemistry 27:3787–3788CrossRefGoogle Scholar
  74. Wu TS, Yang CC, Wu PL, Liu LK (1995) A quinol and steroids from the leaves and stems of Rhinacanthus nasutus. Phytochemistry 40:1247–1249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center for Excellence in Omics-Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health SciencesChulalongkorn UniversityBangkokThailand

Personalised recommendations