Skip to main content
Log in

Bioavailability of silymarin flavonolignans: drug formulations and biotransformation

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Over the past years, great advances have been made on the development of novel delivery systems for bioactive natural compounds, in parallel to their structural modification via chemical, chemo-enzymatic and enzymatic methodologies. These approaches give rise to novel formulations and derivatives that often display advantages over the parental molecule, such as enhanced bioavailability and pharmacological activity, due to improved dissolution and stability. Silymarin components suffer from poor solubility in water and lipid media and their resorption in the intestine is rather limited. Moreover, silybin undergoes intensive Phase II metabolism and is rapidly excreted in bile and urine, leading to low therapeutic efficacy. This work aims to present the current status of available silymarin formulations, and to highlight successful efforts for the biotransformation of its constituent flavonolignans towards the synthesis of novel derivatives. Herein, various pharmaceutical formulations that aim at the bioavailability improvement of these fascinating phytochemicals, i.e., liposomes, phytosomes, self-microemulsifying drug delivery systems, solid dispersions systems, dripping pills, nanosuspensions, floating tablets, and micronization, are reviewed. Silybin (semi)synthetic derivatives prepared by chemical or enzymatic methods, such as fatty acid conjugates, silybin bishemisuccinate, silybin glycosides, silybin sulfates, silybinic acid, and 2,3-dehydrosilybin, are also discussed in detail. Additionally, this work attempts to direct the attention towards the pharmacological implications of optically pure silybin A and silybin B and their biotransformation reactions, both Phase I and II, in relation to bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

GI:

Gastrointestinal

GST:

Glutathione S-transferase

MDA:

Malonaldehyde

PEG:

Polyethylene glycol

Pgp:

P–glycoprotein

ROS:

Reactive oxygen species

SEDDS:

Self emulsifying drug delivery system

SMEDDS:

Self-micro emulsifying drug delivery system

UDP:

Uridine diphosphate

References

  • Abascal K, Yarnell W (2003) The many faces of Silybum marianum (Milk Thistle) Part 1-treating cancer and hyperlipidemia and restoring kidney Function. Altern Complement Ther 9:170–175

    Google Scholar 

  • Abourashed EA, Mikell JR, Khan IA (2012) Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg Med Chem 20:2784–2788

    CAS  PubMed  Google Scholar 

  • Agarwal R, Agarwal C, Ichikawa H et al (2006) Anticancer potential of silymarin: from bench to bed side. Anticancer Res 26:4457–4498

    CAS  PubMed  Google Scholar 

  • Arza RA, Gonugunta CS, Veerareddy PR (2009) Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech 10:220–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bandopadhyay M, Pardeshi NP, Seshadri TR (1972) Components of Silibum marianum. Ind J Chem 10:808–809

    CAS  Google Scholar 

  • Barzaghi N, Crema F, Gatti G et al (1990) Pharmacokinetic studies on IdB 1016, a silybin-phosphatidylcholine complex, in healthy human subjects. Eur J Drug Metab Pharmacokinet 15:333–338

    CAS  PubMed  Google Scholar 

  • Bhattacharya S (2009) Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res 2:225–232

    CAS  Google Scholar 

  • Bombardelli E (1994) Phytosome in functional cosmetics. Fitoterapia LXV 5:387–401

    Google Scholar 

  • Brantley SJ, Oberlies NH, Kroll DJ et al (2010) Two flavonolignans from milk thistle (Silybum marianum) inhibit CYP2C9-mediated warfarin metabolism at clinically achievable concentrations. J Pharmacol Exp Ther 332:1081–1087

    CAS  PubMed  Google Scholar 

  • Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39:2226–2254

    CAS  Google Scholar 

  • Chebil L, Humeau C, Falcimaigne A et al (2006) Enzymatic acylation of flavonoids. Proc Biochem 41:2237–2251

    CAS  Google Scholar 

  • Davis-Searles PR, Nakanishi Y, Kim NCh et al (2005) Milk thistle and prostate cancer: differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res 65:4448–4457

    CAS  PubMed  Google Scholar 

  • Deep G, Agarwal R (2007) Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr Cancer Ther 6:130–145

    CAS  PubMed  Google Scholar 

  • Dhirendra K, Lewis S, Udupa N et al (2009) Solid dispersions: a review. Pak J Pharm Sci 22:234–246

    CAS  PubMed  Google Scholar 

  • Džubák P, Hajdúch M, Gažák R, Svobodová A, Psotová J, Walterová D, Sedmera P, Křen V (2006) New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem 14:3793–3810

    PubMed  Google Scholar 

  • El-Samaligy MS, Afifi NN, Mahmoud EA (2006) Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int J Pharm 319:121–129

    CAS  PubMed  Google Scholar 

  • Fahr A, van Hoogevest P, May S et al (2005) Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci 26:251–265

    CAS  PubMed  Google Scholar 

  • Flora K, Hahn M, Rosen H et al (1998) Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 93:139–143

    CAS  PubMed  Google Scholar 

  • Foster S (1996) Milk thistle Silybum marianum. Botanical Series No. 305, 2nd edn. American Botanical Council, Austin, Texas

    Google Scholar 

  • Gabrielová E, Jabůrek M, Gažák R, Vostálová J, Ježek J, Křen V, Modrianský M (2010) Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J Bioenerg Biomembr 42:499–509

    PubMed  Google Scholar 

  • Gallo D, Giacomelli S, Ferlini C et al (2003) Antitumour activity of the silybin-phosphatidylcholine complex, IdB 1016, against human ovarian cancer. Eur J Cancer 39:2403–2410

    CAS  PubMed  Google Scholar 

  • Garg G, Das Gupta G (2009) Preparation and evaluation of gastroretentive floating tablets of silymarin. Chem Pharm Bull 6:545–549

    Google Scholar 

  • Gažák R, Svobodová A, Psotová J, Sedmera P, Přikrylová V, Walterová D, Křen V (2004) Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg Med Chem 12:5677–5687

    PubMed  Google Scholar 

  • Gažák R, Walterová D, Křen V (2007) Silybin and silymarin—new and emerging applications in medicine. Curr Med Chem 14:315–338

    PubMed  Google Scholar 

  • Gažák R, Sedmera P, Vrbacký M, Vostálová J, Drahota Z, Marhol P, Walterová D, Křen V (2009) Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity—role of individual hydroxyl groups. Free Radic Biol Med 46:745–758

    PubMed  Google Scholar 

  • Gažák R, Marhol P, Purchartová K, Monti D, Biedermann D, Riva S, Cvak L, Křen V (2010a) Large-scale separation of silybin diastereoisomers using lipases. Proc Biochem 45:1657–1663

    Google Scholar 

  • Gažák R, Purchartová K, Marhol P, Živná L, Sedmera P, Valentová K, Kato N, Matsumura H, Kaihatsu K, Křen V (2010b) Antioxidant and antiviral activities of silybin fatty acid conjugates. Eur J Med Chem 45:1059–1067

    PubMed  Google Scholar 

  • Gažák R, Fuksová K, Marhol P, Kuzma M, Agarwal R, Křen V (2013a) Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture. Proc Biochem 48:184–189

    Google Scholar 

  • Gažák R, Trouillas P, Biedermann D, Fuksová K, Marhol P, Kuzma M, Křen V (2013b) Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro-derivatives. Tetrahedron Lett 54:315–317

    Google Scholar 

  • Giri A, Dhingra V, Giri CC et al (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 3:175–199

    Google Scholar 

  • Gunaratna C, Zhang T (2003) Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes. J Chromatogr, B: Anal Technol Biomed Life Sci 794:303–310

    CAS  Google Scholar 

  • Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58:173–182

    PubMed  Google Scholar 

  • Han YH, Lou HX, Ren DM et al (2004) Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J Pharm Biomed Anal 34:1071–1078

    CAS  PubMed  Google Scholar 

  • Horváth ME, González-Cabello R, Blázovics A et al (2001) Effect of silibinin and vitamin E on restoration of cellular immune response after partial hepatectomy. J Ethnopharmacol 77:227–232

    PubMed  Google Scholar 

  • Huang KX, Gong JX, Xiong W et al (2009) Preparation of silybin 23-esters and evaluation of their inhibitory ability against LPO and DNA protective properties. Chin Chem Lett 20:1030–1033

    Google Scholar 

  • Huber A, Thongphasuk P, Erben G et al (2008) Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim Biophys Acta 1780:837–847

    CAS  PubMed  Google Scholar 

  • Ishihara K, Hamada H, Hirata T et al (2003) Biotransformation using plant cultured cells. J Mol Catal B Enzym 23:145–170

    CAS  Google Scholar 

  • Jančová P, Anzenbacherová E, Papoušková B et al (2007) Silybin is metabolized by cytochrome P450 2C8 in vitro. Drug Metab Dispos 35:2035–2039

    PubMed  Google Scholar 

  • Javed S, Kohli K, Ali M (2011) Reassessing bioavailabilty of silymarin. Altern Med Rev 16:239–249

    PubMed  Google Scholar 

  • Kidd P, Head K (2005) A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Altern Med Rev 10:193–203

    PubMed  Google Scholar 

  • Kim HJ, Park HS, Lee IS (2006) Microbial transformation of silybin by Trichoderma koningii. Bioorg Med Chem Lett 16:790–793

    CAS  PubMed  Google Scholar 

  • Kiruthiga PV, Shafreen RB, Pandian SK et al (2007) Silymarin protection against major reactive oxygen species released by environmental toxins: exogenous H2O2 exposure in erythrocytes. Basic Clin Pharmacol Toxicol 100:414–419

    CAS  PubMed  Google Scholar 

  • Kosina P, Křen V, Gebhardt R et al (2002) Antioxidant properties of silybin glycosides. Phytother Res 16(Suppl 1):S33–S39

    CAS  PubMed  Google Scholar 

  • Křen V, Walterová D (2005) Silybin and silymarin—new effects and applications. Biomed Pap 149:29–41

    Google Scholar 

  • Křen V, Kubisch J, Sedmera P et al (1997) Glycosylation of silybin. J Chem Soc Perkin Trans 1:2467–2474

    Google Scholar 

  • Křen V, Minghetti A, Sedmera P et al (1998) Glucosylation of silybin by plant cell cultures of Papaver somniferum var. setigerum. Phytochem 47:217–220

    Google Scholar 

  • Křen V, Ulrichová J, Kosina P et al (2000) Chemoenzymatic preparation of silybine β-glucuronide and their biological evaluation. Drug Metab Disp 28:1513–1517

    Google Scholar 

  • Křen V, Gažák R, Purchartová K et al (2009) Chemoenzymatic preparative separation of silybin A and B. J Mol Catal B Enzymat 61:247–251

    Google Scholar 

  • Kroll DJ, Shaw HS, Oberlies NH (2007) Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. Integr Cancer Ther 6:110–119

    CAS  PubMed  Google Scholar 

  • Kubisch J, Sedmera P, Halada P, Gažák R, Škottová N, Šimánek V, Křen V (2001) Chemoenzymatic preparation of oligoglycosides of silybin, the flavonolignan from Silybum marianum. Heterocycles 53:901–915

    Google Scholar 

  • Lee JI, Hsu BH, Wu D et al (2006) Separation and characterization of silybin, isosilybin, silydianin and silychristin in milk thistle extract by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1116:57–68

    CAS  PubMed  Google Scholar 

  • Li FQ, Hu JH (2004) Improvement of the dissolution rate of silymarin by means of solid dispersions. Chem Pharm Bull (Tokyo) 52:972–973

    CAS  Google Scholar 

  • Li X, Yuan Q, Huang Y et al (2010) Development of silymarin self-microemulsifying drug delivery system with enhanced oral bioavailability. AAPS PharmSciTech 11:672–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lieber CS (2000) Alcoholic liver disease: new insights in pathogenesis lead to new treatments. J Hepatol 32(suppl 1):113–128

    CAS  PubMed  Google Scholar 

  • Loguercio C, Festi D (2011) Silybin and the liver: from basic research to clinical practice. World J Gastroenterol 17:2288–2301

    CAS  PubMed  Google Scholar 

  • Maheshwari H, Agarwal R, Patil C et al (2003) Preparation and pharmacological evaluation of silibinin liposomes. Arzneimittelforschung 53:420–427

    CAS  PubMed  Google Scholar 

  • Maitrejean M, Comte G, Barron D et al (2000) The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett 10:157–160

    CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  • Manach C, Mazur A, Scalbert A (2005) Bioavailability and bioefficacy of polyphenols in humans. I Review of 97 bioavailability studies. Am J Clin Nutr 81(Suppl 1):230S–242S

    CAS  PubMed  Google Scholar 

  • Marhol P, Hartog AF, van der Horst MA et al (2013) Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J Mol Catal B Enzym 89:24–27

    CAS  Google Scholar 

  • Mayer KE, Myers RP, Lee SS (2005) Silymarin treatment of viral hepatitis: a systematic review. J Viral Hepat 12:559–567

    CAS  PubMed  Google Scholar 

  • Miguez MP, Anundi I, Sainz-Pardo LA et al (1994) Comparative study of the hepatoprotective effect of silymarin and silybin on isolated rat hepatocytes. Toxicol In Vitro 8:581–583

    CAS  PubMed  Google Scholar 

  • Miranda SR, Lee JK, Brouwer KLR et al (2008) Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: role of multidrug resistance-associated protein 2 (Abcc2). Drug Metab Dispos 36:2219–2226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monbrison F, Maitrejean M, Latour C et al (2006) In vitro antimalarial activity of flavonoid derivatives dehydrosilybin and 8-(1;1)-DMA-kaempferide. Acta Trop 97:102–107

    PubMed  Google Scholar 

  • Monti D, Gažák R, Marhol P, Biedermann D, Purchartová K, Fedrigo M, Riva S, Křen V (2010) Enzymatic kinetic resolution of silybin diastereoisomers. J Nat Prod 73:613–619

    CAS  PubMed  Google Scholar 

  • Mulrow C, Lawrence V, Jacobs B et al (2000) Milk thistle: effects on liver disease and cirrhosis and clinical adverse effects. Evidence report/Technology assessment. Agency for Healthcare Research and Quality. AHRQ Publication No. 01-E025

  • Parés A, Planas R, Torres M et al (1998) Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol 28:615–621

    PubMed  Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharcol 56:827–840

    CAS  Google Scholar 

  • Pérez-Victoria JM, Pérez-Victoria FJ, Conseil G et al (2001) High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob Agents Chemother 45:439–446

    PubMed Central  PubMed  Google Scholar 

  • Plíšková M, Vondráček J, Křen V et al (2005) Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology 215:80–89

    PubMed  Google Scholar 

  • Post-White J, Ladas EJ, Kelly KM (2007) Advances in the use of milk thistle (Silybum marianum). Integr Cancer Ther 6:104–109

    CAS  PubMed  Google Scholar 

  • Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25:47–58

    CAS  Google Scholar 

  • Pradhan SC, Girish C (2006) Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 124:491–504

    CAS  PubMed  Google Scholar 

  • Purchartová K, Marhol P, Gažák R et al (2011) Regioselective alcoholysis of silybin A and B acetates with lipases. J Mol Catal B Enzymat 71:119–123

    Google Scholar 

  • Purchartová K, Engels L, Marhol P et al (2013) Enzymatic preparation of silybin metabolites: sulfation using arylsulfotransferase from rat liver. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4794-0

  • Qiu MF, Jia W, Li SS et al (2005) A new silymarin preparation based on solid dispersion technique. Adv Ther 22:595–600

    CAS  PubMed  Google Scholar 

  • Ramasamy K, Agarwal R (2008) Multitargeted therapy of cancer by silymarin. Cancer Lett 269:352–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saller R, Meier R, Brignoli R (2001) The use of silymarin in the treatment of liver diseases. Drugs 61:2035–2063

    CAS  PubMed  Google Scholar 

  • Sasson A (1991) Production of useful biochemicals by higher-plant cell cultures: biotechnological and economic aspects. CIHEAM Options Mediterr 14:59–74

    Google Scholar 

  • Schandalik R, Gatti G, Perucca E (1992) Pharmacokinetics of silybin in bile following administration of silipide and silymarin in cholecystectomy patients. Arzneimittelforschung 42:964–968

    CAS  PubMed  Google Scholar 

  • Sethia S, Squillante E (2003) Solid dispersions: revival with greater possibilities and applications in oral drug delivery. Crit Rev Ther Drug Carrier Syst 20:215–247

    CAS  PubMed  Google Scholar 

  • Sharp H, Hollinshead J, Bartholomew BB et al (2007) Inhibitory effects of Cissus quadrangularis L. derived components on lipase, amylase and alpha-glucosidase activity in vitro. Nat Prod Commun 2:817–822

    CAS  Google Scholar 

  • Shimoda K, Imai H, Mandai T et al (2012) Regioselective formation of silybin-23-beta-d-glucoside by glucosylation of silybin with cultured plant cells of Eucalyptus perriniana. Nat Prod Commun 7:531–532

    CAS  PubMed  Google Scholar 

  • Silberberg M, Gil-Izquierdo A, Combaret L et al (2006) Flavanone metabolism in healthy and tumor bearing rats. Biomed Pharmacother 60:529–535

    CAS  PubMed  Google Scholar 

  • Šimánek V, Křen V, Ulrichová J et al (2000) Silymarin: “What is in the name…?” An appeal for a change of editorial policy. Hepatology 32:442–444

    PubMed  Google Scholar 

  • Song Y, Zhuang J, Guo J et al (2008) Preparation and properties of a silybin-phospholipid complex. Pharmazie 63:35–42

    CAS  PubMed  Google Scholar 

  • Sridar C, Goosen TC, Kent UM et al (2004) Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases. Drug Metab Dispos 32:587–594

    CAS  PubMed  Google Scholar 

  • Sun N, Wei X, Wu B et al (2008) Enhanced dissolution of silymarin/polyvinylpyrrolidone solid dispersion pellets prepared by a one-step fluid-bed coating technique. Powder Technol 182:72–80

    CAS  Google Scholar 

  • Suryawanshi SJA (2011) Phytosome: an emerging trend in herbal drug treatment. J Med Gene Geno 3:109–114

    Google Scholar 

  • Svobodová A, Walterová D, Psotová J (2006) Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns 32:973–979

    PubMed  Google Scholar 

  • Svobodová A, Zdařilová A, Walterová D et al (2007) Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J Dermatol Sci 48:213–224

    PubMed  Google Scholar 

  • Tang B, Cheng G, Gu JC et al (2008) Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today 13:606–612

    CAS  PubMed  Google Scholar 

  • Theodosiou E, Katsoura MM, Loutrari H, Purchartová K, Křen V, Kolisis FN, Stamatis H (2009) Enzymatic preparation of acylated derivatives of silybin in organic and ionic liquid media and evaluation of their antitumor proliferative activity. Biocat Biotrans 27:161–169

    CAS  Google Scholar 

  • Theodosiou E, Loutrari H, Stamatis H, Roussos C, Kolisis FN (2011) Biocatalytic synthesis and antitumor activities of novel silybin acylated derivatives with dicarboxylic acids. New Biotechnol 28:342–348

    CAS  Google Scholar 

  • Thongphasuk P, Stremmel W, Chamulitrat W (2008) Potent direct or TNF-alpha-promoted anticancer effects of 2,3-dehydrosilybin: comparison study with silybin. Chemotherapy 54:23–30

    CAS  PubMed  Google Scholar 

  • Thongphasuk P, Stremmel W, Chamulitrat W (2009) 2,3-Dehydrosilybin is a better DNA topoisomerase I inhibitor than its parental silybin. Chemotherapy 55:42–48

    CAS  PubMed  Google Scholar 

  • Trouillas P, Marsal P, Svobodová A et al (2008) Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: a joint experimental and theoretical study. J Phys Chem A 112:1054–1063

    CAS  PubMed  Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12:1068–1075

    CAS  PubMed  Google Scholar 

  • Verma RK, Garg S (2001) Current status of drug delivery technologies and future directions. Pharm Technol 25:1–14

    Google Scholar 

  • Wang Y, Zhang D, Liu Z et al (2010) In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnol 21:155104

    Google Scholar 

  • Wellington K, Jarvis B (2001) Silymarin: a review of its clinical properties in the management of hepatic disorders. BioDrugs 15:465–489

    CAS  PubMed  Google Scholar 

  • Woo JS, Kim TS, Park JH et al (2007) Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch Pharm Res 30:82–89

    CAS  PubMed  Google Scholar 

  • Wu JW, Tsai TH (2007) Effect of silibinin on the pharmacokinetics of pyrazinamide and pyrazinoic acid in rats. Drug Metab Disp 35:1603–1610

    CAS  Google Scholar 

  • Wu W, Wang Y, Que L (2006) Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm 63:288–294

    CAS  PubMed  Google Scholar 

  • Wu JW, Lin LC, Hung SC et al (2007) Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J Pharm Biomed Anal 45:635–641

    CAS  PubMed  Google Scholar 

  • Xanthakis E, Theodosiou E, Magkouta S et al (2010) Enzymatic transformation of flavonoids and terpenoids: structural and functional diversity of the novel derivatives. Pure Appl Chem 82(1):1–16

    CAS  Google Scholar 

  • Yanyu X, Yunmei S, Zhipeng C et al (2006) The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 307:77–82

    PubMed  Google Scholar 

  • Zatloukalová M, Křen V, Gažák R et al (2011) Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II). Bioelectrochemistry 82:117–124

    PubMed  Google Scholar 

  • Zhan T, Digel M, Küch EM et al (2011) Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J Cell Biochem 112:849–859

    CAS  PubMed  Google Scholar 

  • Zhang ZB, Shen ZG, Wang JX et al (2009) Micronization of silybin by the emulsion solvent diffusion method. Int J Pharm 376:116–122

    CAS  PubMed  Google Scholar 

  • Zhao J, Lahiri-Chatterjee M, Sharma Y et al (2000) Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis 21:811–816

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the Czech Science Foundation P301/11/0662; ESF COST Chemistry CM0804 (MŠMT LD11051 and ME10027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleni Theodosiou or Vladimír Křen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodosiou, E., Purchartová, K., Stamatis, H. et al. Bioavailability of silymarin flavonolignans: drug formulations and biotransformation. Phytochem Rev 13, 1–18 (2014). https://doi.org/10.1007/s11101-013-9285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9285-5

Keywords

Navigation