Phytochemistry Reviews

, Volume 12, Issue 1, pp 107–119 | Cite as

Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications

  • Muhamad Insanu
  • Chryssa Dimaki
  • Richard Wilkins
  • John Brooker
  • Piet van der Linde
  • Oliver Kayser


Jatropha curcas L. has become an important plant for biorefinery and production of biodiesel. From its ethnobotanical use, the plant is known for several activities which are associated with high toxicity. The latest development in engineering technology enables detoxification of native oil and other parts of the plant for new pharmaceutical purposes. Hence a revised look to the rich metabolic spectra of partly structurally rare secondary compound becomes an interesting field of research to be explored. In this review, we discuss recent developments in the technology of detoxification process and give insight about how this ethnomedicinal plant can be applied to new fields of experimental medicine. The review highlights recent data on biological activities and discusses concepts and strategies for turning a poison plant into a valuable crop with high pharmaceutical potential.


Biorefinery Detoxification Secondary natural products Anticancer Toxicity Phorbol esters Cyclic peptides Biochemical engineering 



This research was funded by KNAW (Valorization of Indonesian renewable resources and particularly Jatropha curcas using the biorefinery project), Agentschap NL and KTP.


  1. Abdel Gadir WS, Onsa TO, Ali WEM, El Badwi SMA, Adam SEI (2003) Comparative toxicity of Croton macrostachys, Jatropha curcas and Piper abyssinica seeds in Nubian goats. Small Rumin Res 48(1):61–67CrossRefGoogle Scholar
  2. Abdu-Aguye I, Sannusi A, Alafiya-Tayo RA, Bhusnurmath SR (1986) Acute toxicity studies with Jatropha curcas L. Hum Exp Toxicol 5(4):269–274CrossRefGoogle Scholar
  3. Adam SEI (1974) Toxic effects of Jatropha curcas in mice. Toxicology 2(1):67–76PubMedCrossRefGoogle Scholar
  4. Adam SEI, Magzoub M (1975) Toxicity of Jatropha curcas for goats. Toxicology 4(3):388–389CrossRefGoogle Scholar
  5. Aderibigbe AO, Johnson COLE, Makkar HPS, Becker K, Foidl N (1997) Chemical composition and effect of heat on organic matter- and nitrogen-degradability and some antinutritional components of Jatropha meal. Anim Feed Sci Tech 67(2–3):223–243CrossRefGoogle Scholar
  6. Adolf W, Opferkuch H, Hecker E (1984) Irritant phorbol derivatives from four Jatropha species. Phytochemistry 23(1):129–132CrossRefGoogle Scholar
  7. Aiyelaagbe OO, Adeniyi BA, Fatunsin OF, Arimah BD (2007) In vitro antimicrobial activity and phytochemical analysis of Jatropha curcas roots. Int J Pharm 3(1):106–110CrossRefGoogle Scholar
  8. Aregheore EM, Makkar HPS, Becker K (1998) Assessment of lectin activity in a toxic and a non-toxic variety of Jatropha curcas using latex agglutination and haemagglutination methods and inactivation of lectin by heat treatments. J Sci Food Agr 77(3):349–352CrossRefGoogle Scholar
  9. Asseleih LMC, Plumbley RA, Hylands PJ (1989) Purification and partial characterization of a hemagglutinin from seeds of Jatropha Curcas. J Food Biochem 13(1):1–20CrossRefGoogle Scholar
  10. Auvin C, Baraguey C, Blond A, Lezenven F, Pousset J-L, Bodo B (1997) Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett 38(16):2845–2848CrossRefGoogle Scholar
  11. Becker K, Makkar HPS (2008) Jatropha curcas: a potential source for tomorrow’s oil and biodiesel. Lipid Tech 20(5):104–107CrossRefGoogle Scholar
  12. Brooker J (2010) Methods for detoxifying oil seed crops. Great Britain Patent 2466353, 24 June 2010Google Scholar
  13. Chianese G, Fattorusso E, Aiyelaagbe OO, Luciano P, SchroÌder HC, MuÌller WEG, Taglialatela-Scafati O (2011) Spirocurcasone, a diterpenoid with a novel carbon skeleton from Jatropha curcas. Org Lett 13(2):316–319PubMedCrossRefGoogle Scholar
  14. Chivandi E, Mtimuni JP, Read JS, Makuza SM (2004) Effect of processing method on phorbol esters concentration, total phenolics, trypsin inhibitor activity and the proximate composition of the Zimbabwean Jatropha curcas provenance: a potential livestock feed. Pak J Biol Sci 7(6):1001–1005CrossRefGoogle Scholar
  15. Clemens M, Trayner I, Menaya J (1992) The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci 103(4):881–887PubMedGoogle Scholar
  16. Das B, Laxminarayana K, Krishnaiah M, Srinivas Y, Raju TV (2009) Multidione, a novel diterpenoid from Jatropha multifida. Tetrahedron Lett 50(34):4885–4887CrossRefGoogle Scholar
  17. Devappa RK, Swamylingappa B (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agr 88(5):911–919CrossRefGoogle Scholar
  18. Dimitrijevic SM, Humer U, Shehadeh M, Ryves WJ, Hassan NM, Evans FJ (1996) Analysis and purification of phorbol esters using normal phase HPLC and photodiode-array detection. J Pharmaceut Biomed 15(3):393–401CrossRefGoogle Scholar
  19. Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energ 87(3):732–742CrossRefGoogle Scholar
  20. Fagbenro-Beyioku AF, Oyibo WA, Anuforom BC (1998) Disinfectant/antiparasitic activities of Jatropha curcas. E Afr Med J 75(9):508–511Google Scholar
  21. Francis G, Makkar HP, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3/4):197–227CrossRefGoogle Scholar
  22. Gandhi VM, Cherian KM, Mulky MJ (1995) Toxicological studies on ratanjyot oil. Food Chem Toxicol 33(1):39–42PubMedCrossRefGoogle Scholar
  23. Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26(4):279–288PubMedCrossRefGoogle Scholar
  24. Goonasekera MM, Gunawardana VK, Jayasena K, Mohammed SG, Balasubramaniam S (1995) Pregnancy terminating effect of Jatropha curcas in rats. J Ethnopharmacol 47:117–123PubMedCrossRefGoogle Scholar
  25. Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67(1):73–82CrossRefGoogle Scholar
  26. Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65(10):1434–1440PubMedCrossRefGoogle Scholar
  27. He Y (2011) Method for removing phorbol ester form organic material, method for producing organic material having high protein content, organic material having high protein content, method for producing feed, and feed. European Patent EP 2397240A13, 21 Dec 2011Google Scholar
  28. He W, King AJ, Khan MA, Cuevas JsA, Ramiaramanana Dl, Graham IA (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Bioch 49(10):1183–1190CrossRefGoogle Scholar
  29. Horiuchi T, Fujiki H, Hirota M, Suttajit M, Suganuma M, Yoshioka A, Wongchai V, Hecker E, Sugimura T (1987) Presence of tumor promoters in the seed oil of Jatropha curcas L. from Thailand. Jpn J Cancer Res 78(3):223–226PubMedGoogle Scholar
  30. Jing L, Fang Y, Ying X, Wenxing H, Meng X, Syed MN, Fang C (2005) Toxic impact of ingested Jatropherol-I on selected enzymatic activities and the ultrastructure of midgut cells in silkworm, Bombyx mori L. J Appl Entomol 129(2):98–104CrossRefGoogle Scholar
  31. Kulkarni ML, Sreekar H, Keshavamurthy KS, Shenoy N (2005) Jatropha curcas—poisoning. Indian J Pediatr 72(1):75–76PubMedCrossRefGoogle Scholar
  32. Li C-Y, Devappa RK, Liu J-X, Lv J-M, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48(2):620–625PubMedCrossRefGoogle Scholar
  33. Lin J, Li Y, Zhou X, Tang K, Chen F (2003a) Cloning and characterization of a curcin gene encoding a ribosome inactivating protein from Jatropha curcas. DNA Seq 14(4):311–317PubMedGoogle Scholar
  34. Lin J, Yan F, Tang L, Chen F (2003b) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24(3):241–246PubMedGoogle Scholar
  35. Lin J, Zhou X, Wang J, Jiang P, Tang K (2010) Purification and characterization of curcin, a toxic lectin from the seed of Jatropha curcas. Prep Biochem Biotech 40(2):107–118CrossRefGoogle Scholar
  36. Luo M, Liu W, Yang X, Xu Y, Yan F, Huang P, Chen F (2007) Cloning, expression, and antitumor activity of recombinant protein of curcin. Russ J Plant Physiol 54(2):202–206Google Scholar
  37. Makkar HPS, Becker K (1999) Nutritional studies on rats and fish (carp Cyprinus carpio) fed diets containing unheated and heated Jatropha curcas meal of a non-toxic provenance. Plant Food Hum Nutr 53(3):183–192CrossRefGoogle Scholar
  38. Makkar HPS, Becker K (2010) Method for detoxifying plant constituents. European Patent EP 2 397 240 A1, 22 Sept 2010Google Scholar
  39. Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agr Food Chem 45(8):3152–3157CrossRefGoogle Scholar
  40. Makkar HPS, Aderibigbe AO, Becker K (1998a) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62(2):207–215CrossRefGoogle Scholar
  41. Makkar HPS, Becker K, Schmook B (1998b) Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Food Hum Nutr 52(1):31–36CrossRefGoogle Scholar
  42. Martínez-Herrera J, Siddhuraju P, Francis G, Dávila-Ortíz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96(1):80–89CrossRefGoogle Scholar
  43. Matsuse IT, Lim YA, Hattori M, Correa M, Gupta MP (1998) A search for anti-viral properties in Panamanian medicinal plants: the effects on HIV and its essential enzymes. J Ethnopharmacol 64(1):15–22CrossRefGoogle Scholar
  44. Morton JF (1980) Atlas of medicinal plants of middle America: Bahamas to Yucatan. C. C. Thomas, SpringfieldGoogle Scholar
  45. Naengchomnong W, Thebtaranonth Y, Wiriyachitra P, Okamoto KT, Clardy J (1986a) Isolation and structure determination of four novel diterpenes from Jatropha curcas. Tetrahedron Lett 27(22):2439–2442CrossRefGoogle Scholar
  46. Naengchomnong W, Thebtaranonth Y, Wiriyachitra P, Okamoto KT, Clardy J (1986b) Isolation and structure determination of two novel lathyrenes from Jatropha curcas. Tetrahedron Lett 27(47):5675–5678CrossRefGoogle Scholar
  47. Naengchomnong W, Tarnchompoo B, Thebtaranonth Y (1994) (+)-jatrophol, (+)-marmesin, propacin and jatrophin from the roots of Jatropha curcas (Euphorbiaceae). J Sci Soc 20(2):73–83Google Scholar
  48. Nath LK, Dutta SK (1991) Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol 43(2):111–114PubMedCrossRefGoogle Scholar
  49. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258(5082):607–614PubMedCrossRefGoogle Scholar
  50. Oluwole FS, Bolarinwa AF (1997) Jatropha curcas extract causes anaemia in rat. Phytother Res 11(7):538–539CrossRefGoogle Scholar
  51. Pletsch M, Charlwood BV (1997) Accumulation of diterpenoids in cell and root-organ cultures of Jatropha species. J Plant Physiol 150(1–2):37–45CrossRefGoogle Scholar
  52. Ravindranath N, Ravinder Reddy M, Ramesh C, Ramu R, Prabhakar A, Jagadeesh B, Das B (2004a) New lathyrane and podocarpane diterpenoids from Jatropha curcas. Chem Pharm Bull 52(5):608–611PubMedCrossRefGoogle Scholar
  53. Ravindranath N, Reddy MR, Mahender G, Ramu R, Kumar KR, Das B (2004b) Deoxypreussomerins from Jatropha curcas: are they also plant metabolites? Phytochemistry 65(16):2387–2390PubMedCrossRefGoogle Scholar
  54. Reddy NR, Pierson MD (1994) Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27(3):281–290CrossRefGoogle Scholar
  55. Richardson NL, Higgs DA, Beames RM, McBride JR (1985) Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile Chinook salmon (Oncorhynchus tshawytscha). J Nutr 115(5):553–567PubMedGoogle Scholar
  56. Rug M, Ruppel A (2000) Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop Med Int Health 5(6):423–430PubMedCrossRefGoogle Scholar
  57. Sauerwin M, Sporer F, Wink M (1993) Insect toxicity of phorbol esters from Jatropha curcas seed oil. Planta Med 59(7):686CrossRefGoogle Scholar
  58. Schmook B, Seralta-Peraza L (1997) J. curcas: distribution and uses in the Yucatan Peninsula of Mexico. In: Gübitz G, Trabi M, Mittelbach M (ed) Biofuels and industrial products from Jatropha curcas. DBV, GrazGoogle Scholar
  59. Segal A, Van Duuren BL, Mate U (1975) The identification of phorbol myristate acetate as a new metabolite in mouse skin. Cancer Res 35(8):2154–2159PubMedGoogle Scholar
  60. Sharma GD, Gupta SN, Khabiruddin M (1997) Cultivation of Jatropha curcas as a future source of hydrocarbon and industrial products. In: Gübitz GM, Trabi M, Mittelbach M (eds) Biofuels and industrial products from Jatropha curcas. DBV, GrazGoogle Scholar
  61. Solsoloy AD, Solsoloy TS (1997) Pesticidal efficacy of formulated Jatropha curcas oil on pests of selected field crops. In: Gübitz GM, Trabi M, Mittelbach M (eds) Biofuels and industrial products from Jatropha curcas. DBV, Graz Google Scholar
  62. Srinophakun P, Titapiwatanakun B, Sooksathan I, Punsuvon V (2012) Prospect of deoiled Jatropha curcas seedcake as fertilizer for vegetables crops—a case study. J Agr Sci 4(3):211–226Google Scholar
  63. Staubmann R, Schubert-Zsilavecz M, Hiermann A, Kartnig T (1998) A complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione isolated from Jatropha curcas. Phytochemistry 50(2):337–338CrossRefGoogle Scholar
  64. Stirpe F, Pession-Brizzi A, Lorenzoni E, Strocchi P, Montanaro L, Sperti S (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro. Biochem J 156(1):1–6PubMedGoogle Scholar
  65. Subramanian SS, Nagarajan S, Sulochana N (1971) Flavonoids of some Euphorbiaceous plants. Phytochemistry 10(10):2548–2549CrossRefGoogle Scholar
  66. Van den Berg AJ, Horsten SF, Kettenes-van den Bosch JJ, Kroes BH, Beukelman CJ, Leeflang BR, Labadie RP (1995) Curcacycline A-a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 358(3):215–218PubMedCrossRefGoogle Scholar
  67. Wang X-C, Zheng Z-P, Gan X-W, Hu L-H (2009) Jatrophalactam, A novel diterpenoid lactam isolated from Jatropha curcas. Org Lett 11(23):5522–5524PubMedCrossRefGoogle Scholar
  68. Wei Q, Ming H, Ying XX, XinShen Z, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30(3):351–357CrossRefGoogle Scholar
  69. White C, Campbell D, Combs G (1989) Effect of moisture and processing temperature on activities of trypsin inhibitor and urease in soybeans fed swine. In: Huisman J, Van der Poel T, Liener I (eds) Recent advances in antinutritional factors in Legume seeds. Pudoc, WageningenGoogle Scholar
  70. Wink M, Koschmieder C, Sauerwein M, Sporer F (1997) Phorbol esters of Jatropha curcas—biological and potential applications. In: Gübitz GM, Trabi M, Mittelbach M (eds) Biofuels and industrial products from Jatropha curcas. DBV, GrazGoogle Scholar
  71. Wirasutisna K, Artri E (2011) Reducing of phorbol ester content in callus cultures of physic nut (Jatropha curcas L.) using manganese chloride and n-ethylmaeimid. Pharmacog J 3(20):42–46Google Scholar
  72. Xiao J, Zhang H, Niu L, Wang X, Lu X (2011) Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas Meal. J Agr Food Chem 59(8):4040–4044CrossRefGoogle Scholar
  73. Yasuraoka K, Hashiguchi J, Blas BL (1980) Laboratory assessment of the molluscicidal activity of the plant Jatropha curcas against Oncomelania snail. In: Philippine-Japan joint conference on schistosomiasis research and control, ManilaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Muhamad Insanu
    • 1
    • 2
  • Chryssa Dimaki
    • 3
  • Richard Wilkins
    • 3
  • John Brooker
    • 4
  • Piet van der Linde
    • 4
  • Oliver Kayser
    • 5
  1. 1.Department of Pharmaceutical BiologyUniversity of GroningenGroningenThe Netherlands
  2. 2.School of PharmacyInstitut Teknologi BandungBandungIndonesia
  3. 3.School of Agriculture Food and Rural DevelopmentUniversity of NewcastleNewcastle upon TyneUK
  4. 4.Quinvita NVSt Denijs Westrem, GhentBelgium
  5. 5.Technical BiochemistryTechnical University DortmundDortmundGermany

Personalised recommendations