Skip to main content
Log in

Phenolic compounds: from plants to foods

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Phenolic compounds are a large class of plant secondary metabolites, showing a diversity of structures, from rather simple structures, e.g. phenolic acids, through polyphenols such as flavonoids, that comprise several groups, to polymeric compounds based on these different classes. Phenolic compounds are important for the quality of plant based foods: they are responsible for the colour of red fruits, juices and wines and substrates for enzymatic browning, and are also involved in flavour properties. In particular, astringency is ascribed to precipitation of salivary proteins by polyphenols, a mechanism possibly involved in defence against their anti-nutritional effects. Finally, phenolic compounds are considered to contribute to the health benefits associated to dietary consumption of fruits and vegetables. During food processing and storage, plant phenolics are converted to a variety of derived compounds. While methods to analyse lower molecular weight phenolic compounds are well developed, analysis of polymeric compounds remains a challenge. Indeed, strong interactions of polymeric phenolics with plant cell wall material limit their extraction. Besides, their polydispersity results in poor resolution and detection, especially of derived structures such as oxidation products. However, recent advances of the analytical techniques have allowed some progress in their structural characterisation. This review summarizes the current knowledge on methods to analyse polyphenols. It presents their reactions in foods and beverages and the resulting structures, and highlights some aspects related to their impact on colour, flavour and health properties, with examples taken mostly from wine research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Absalon C, Fabre S, Tarascou I et al (2011) New strategies to study the chemical nature of wine oligomeric procyanidins. Anal Bioanal Chem 401:1485–1495

    PubMed  Google Scholar 

  • Agrawal PK (1989) Carbon-13 NMR of flavonoids. Elsevier, Amsterdam

    Google Scholar 

  • Anastasiadi M, Zira A, Magiatis P et al (2009) 1H NMR-based metabonomics for the classification of greek wines according to variety, region, and vintage. Comparison with HPLC data. J Agric Food Chem 57:11067–11074

    PubMed  CAS  Google Scholar 

  • Andersen O, Markham K (2006) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  • Aramendia MA, Garcia I, Lafont F et al (1995a) Determination of isoflavones by high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. Rapid Comm Mass Spectrom 9:503–508

    CAS  Google Scholar 

  • Aramendia MA, Garcia I, Lafont F et al (1995b) Determination of isoflavones using capillary electrophoresis in combination with electrospray mass spectrometry. J Chromatogr A 707:327–333

    CAS  Google Scholar 

  • Arranz A, Saura-Calixto F, Shaha S, Kroon PA (2009) High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agric Food Chem 57:7298–7303

    PubMed  CAS  Google Scholar 

  • Atanasova V, Fulcrand H, Le Guernevé C et al (2002a) Structure of a new dimeric acetaldehyde malvidin 3-glucoside condensation product. Tetrahedron Lett 43:6151–6153

    CAS  Google Scholar 

  • Atanasova V, Fulcrand H, Cheynier V, Moutounet M (2002b) Effect of oxygenation on polyphenol changes occurring in the course of wine making. Anal Chim Acta 458:15–27

    CAS  Google Scholar 

  • Azevedo J, Fernandes I, Faria A et al (2010) Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem 119:518–523

    CAS  Google Scholar 

  • Bakkalbasi E, Mentes O, Artik N (2009) Food ellagitannins—occurrence, effects of processing and storage. Crit Rev Food Sci Nutr 49:283–298

    PubMed  CAS  Google Scholar 

  • Bakker J, Timberlake CF (1997) Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J Agric Food Chem 45:35–43

    CAS  Google Scholar 

  • Bakker J, Bridle P, Honda T et al (1997) Identification of an anthocyanin occurring in some red wines. Phytochemistry 44:1375–1382

    CAS  Google Scholar 

  • Balas L, Vercauteren J (1994) Extensive high-resolution reverse 2D NMR analysis for the structural elucidation of procyanidin oligomers. Magn Res Chem 32:386–393

    CAS  Google Scholar 

  • Baldi A, Romani A, Mulinacci N et al (1995) HPLC/MS application to anthocyanins of Vitis vinifera L. J Agric Food Chem 43:2104–2109

    CAS  Google Scholar 

  • Barofsky D (1988) FAB-MS applications in the elucidation of proanthocyanidin structure. In: Hemingway R, Karchesy J (eds) Chemistry and significance of condensed tannins. Plenum Press, New York, pp 175–195

    Google Scholar 

  • Bate-Smith EC (1948) Paper chromatography of anthocyanins and related substances in petal extracts. Nature 161:835–838

    PubMed  CAS  Google Scholar 

  • Bate-Smith EC (1953) Colour reactions of flowers attributed to (a) flavanols and (b) carotenoid oxides. J Exp Bot 4:1–9

    Google Scholar 

  • Bate-Smith EC (1954) Astringency in foods. Food 23:124–135

    CAS  Google Scholar 

  • Bate-Smith EC (1962) The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. J Linn Soc (Bot) 58:95–173

    CAS  Google Scholar 

  • Bate-Smith EC, Swain T (1962) Flavonoid compounds. In: Mason HS, Florkin AM (eds) Comparative biochemistry, vol III. Academic Press, New York, pp 755–809

    Google Scholar 

  • Baxter NJ, Lilley TH, Haslam E, Williamson MP (1997) Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577

    PubMed  CAS  Google Scholar 

  • Bazzocco S, Mattila I, Guyot S et al (2008) Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro. Eur J Nutr 47:442–452

    PubMed  CAS  Google Scholar 

  • Benabdeljalil C, Cheynier V, Fulcrand H et al (2000) Mise en évidence de nouveaux pigments formés par réaction des anthocyanes avec des métabolites de levures. Sci Alim 20:203–220

    CAS  Google Scholar 

  • Beninger CW, Gu L, Prior RL et al (2007) Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). J Agric Food Chem 53:7777–7782

    Google Scholar 

  • Bennick A (1982) Salivary proline-rich proteins. Mol Cell Biochem 45:83–99

    PubMed  CAS  Google Scholar 

  • Boze H, Marlin T, Durand D et al (2010) Proline-rich salivary proteins have extended conformations. Biophys J 99:656–665

    PubMed  CAS  Google Scholar 

  • Brouillard R, Dangles O (1993) Anthocyanin molecular interactions—the first step in the formation of new pigments during wine ageing. Food Chem 51:365–371

    Google Scholar 

  • Brouillard R, Dubois JE (1977) Mechanism of the structural transformations of anthocyanins in acidic media. J Am Chem Soc 99:1359–1364

    CAS  Google Scholar 

  • Brouillard R, Wigand M, Dangles O, Cheminat A (1991) pH and solvent effects on the copigmentation reaction of malvin with polyphenols, purine and pyrimidine derivatives. J Chem Soc Perkin Trans 2:1235–1241

    Google Scholar 

  • Brouillard R, Chassaing S, Isorez G et al (2010) The visible flavonoids or anthocyanins: from research to applications. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances on polyphenol research, vol 2. Blackwell, London, pp 1–22

    Google Scholar 

  • Buendia B, Gil MI, Tudela JA et al (2010) HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J Agric Food Chem 58:3916–3926

    PubMed  CAS  Google Scholar 

  • Butler LG, Price ML, Brotherton JE (1982) Vanillin assay for proanthocyanidins (condensed tannins): modification of the solvent for estimation of the degree of polymerization. J Agric Food Chem 30:1087–1089

    CAS  Google Scholar 

  • Cadot Y, Caillé S, Samson A et al (2012) Sensory representation of typicality of Cabernet franc wines related to phenolic composition: impact of ripening stage and maceration time. Anal Chim Acta (under revision)

  • Cai K, Bennick A (2006) Effect of salivary proteins on the transport of tannin and quercetin across intestinal epithelial cells in culture. Biochem Pharmacol 72:974–980

    PubMed  CAS  Google Scholar 

  • Cala O, Pinaud N, Simon C et al (2010) NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. FASEB J 24:4281–4290

    PubMed  CAS  Google Scholar 

  • Canon F, Ballivian R, Chirot F et al (2011) Folding of a salivary intrinsically disordered protein upon binding to tannins. J Am Chem Soc 133:7847–7852

    PubMed  CAS  Google Scholar 

  • Charlton AJ, Bacter NJ, Khan ML et al (2002) Polyphenol/peptide binding and precipitation. J Agric Food Chem 50:1593–1601

    PubMed  CAS  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178

    CAS  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN, Lavigne V (1993) Synthesis of volatile phenols by Saccharomyces cerevisiae in wine. J Sci Food Agric 62:191–202

    CAS  Google Scholar 

  • Cheynier V (2006) Flavonoids in wine. In: Andersen O, Markham K (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, pp 263–318

    Google Scholar 

  • Cheynier V, Rigaud J, Souquet JM et al (1989) Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. Am J Enol Vitic 40:36–42

    Google Scholar 

  • Cheynier V, Doco T, Fulcrand H et al (1997) ESI-MS analysis of polyphenolic oligomers and polymers. Analusis 25:M32–M37

    CAS  Google Scholar 

  • Cheynier V, Es-Safi NE, Fulcrand H (1999) Structure and colour properties of anthocyanins and related pigments. In: Mosquera MIM, Gala MJ, Mendez DH (eds) Proceeding of the first international congress on pigments in food and technology, Sevilla

  • Cheynier V, Labarbe B, Moutounet M (2001) Estimation of procyanidin chain length. Methods Enzymol 335:82–94

    PubMed  CAS  Google Scholar 

  • Cheynier V, Dueñas-Paton M, Salas E et al (2006) Structure and properties of wine pigments and tannins. Am J Enol Vitic 57:298–305

    CAS  Google Scholar 

  • Clifford M, Scalbert A (2000) Ellagitannins—nature, occurrence and dietary burden. J Sci Food Agric 80:1118–1125

    CAS  Google Scholar 

  • Colonna AE, Adams DO, Noble AC (2004) Comparison of procedures for reducing astringency carry-over effects in evaluation of red wines. Aust J Grape Wine Res 10:26–31

    Google Scholar 

  • Coq S, Souquet JM, Meudec E et al (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rainforest of French Guiana. Ecology 91:2080–2091

    PubMed  Google Scholar 

  • Cruz L, Petrov V, Teixeira N et al (2010) Establishment of the chemical equilibria of different types of pyranoanthocyanins in aqueous solutions: evidence for the formation of aggregation in pyranomalvidin-3-O-coumaroylglucoside-(+)-catechin. J Phys Chem B 114:13232–13240

    PubMed  CAS  Google Scholar 

  • Czochanska Z, Foo LY, Newman RH et al (1979) Direct proof of a homogeneous polyflavan-3-ol structure for polymeric proanthocyanidins. J Chem Soc Chem Comm 375–377

  • Dangles O (2012) Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Curr Org Chem 16(6):692–714

    Google Scholar 

  • Dangles O, Dufour C (2008) Flavonoid-protein binding processes and their potential impact on human health. In: Daayf F, Lattazio V (eds) Recent advances in polyphenol research, vol 1. Blackwell, London, pp 67–87

    Google Scholar 

  • de Freitas VAP, Mateus N (2010) Updating wine pigments. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances in polyphenol research, vol 2. Blackwell, London, pp 59–80

    Google Scholar 

  • De Freitas V, Mateus N (2011) Formation of pyranoanthocyanins in red wines: a new and diverse class of anthocyanin derivatives. Anal Bioanal Chem 401:1463–1473

    PubMed  Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2003) Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Austr J Grape Wine Res 9:15–27

    Google Scholar 

  • Drynan JW, Clifford MN, Obuchowicz J, Kuhnert N (2010) The chemistry of low molecular weight black tea polyphenols. Nat Prod Rep 27:417–462

    PubMed  CAS  Google Scholar 

  • Ducasse MA, Canal-Llauberes RM, de Lumley M et al (2010) Effect of macerating enzyme treatment on the polyphenol and polysaccharide composition of red wines. Food Chem 118:369–376

    CAS  Google Scholar 

  • Duenas M, Salas E, Cheynier V et al (2006) UV-Visible spectroscopic investigation of the 8-8-methylmethine catechin-malvidin 3-glucoside pigments in aqueous solution: structural transformations and molecular complexation with chlorogenic acid. J Agric Food Chem 54:189–196

    PubMed  CAS  Google Scholar 

  • Dugelay I, Gunata Z, Sapis JC et al (1993) Role of cinnamoylesterase activities from enzyme preparations on the formation of volatile phenols during wine-making. J Agric Food Chem 41:2092–2096

    CAS  Google Scholar 

  • Es-Safi NE, Cheynier V, Moutounet M (2000) Study of the reactions between (+)-catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change. J Agric Food Chem 48:5946–5954

    Google Scholar 

  • Es-Safi NE, Fulcrand H, Cheynier V, Moutounet M (1999a) Studies on the acetaldehyde-induced condensation of (−)-epicatechin and malvidin 3-O-glucoside in a model solution system. J Agric Food Chem 47:2096–2102

    PubMed  CAS  Google Scholar 

  • Es-Safi NE, Le Guerneve C, Fulcrand H et al (1999b) New polyphenolic compounds with xanthylium skeletons formed through reaction between (+)-catechin and glyoxylic acid. J Agric Food Chem 47:5211–5217

    PubMed  CAS  Google Scholar 

  • Exarchou V, Godejohann M, van Beek TA, Gerothanassis IP, Vervoort J (2003) LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Anal Chem 75:6288–6294

    PubMed  CAS  Google Scholar 

  • Foo L, Porter L (1978) Prodelphinidin polymers: definition of structural units. J Chem Soc Perkin Trans I:1186–1190

    Google Scholar 

  • Foo L, Porter L (1980) The phytochemistry of proanthocyanidin polymers. Phytochem 19:1747–1754

    CAS  Google Scholar 

  • Foo LY, Lu Y, Howell AB, Vorsa N (2000) The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54:173–181

    PubMed  CAS  Google Scholar 

  • Fossen P, Andersen OM (2003) Anthocyanins from red onion, Allium cepa, with novel aglycone. Phytochemistry 62:1217–1220

    PubMed  CAS  Google Scholar 

  • Fossen T, Andersen OM (2006) Spectroscopic techniques applied to flavonoids. In: Andersen O, Markham K (eds) Flavonoids: chemistry, biochemistry and applications. Taylor and Francis, New York, pp 37–142

    Google Scholar 

  • Fossen T, Rayyan S, Andersen OM (2004) Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols. Phytochemistry 65:1421–1428

    PubMed  CAS  Google Scholar 

  • Francia-Aricha EM, Guerra M, Rivas-Gonzalo J, Santos-Buelga C (1997) New anthocyanin pigments formed after condensation with flavanols. J Agric Food Chem 45:2262–2266

    CAS  Google Scholar 

  • Fulcrand H, Doco T, Es Safi N, Cheynier V (1996a) Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography—ion spray mass spectrometry. J Chromatogr 752:85–91

    CAS  Google Scholar 

  • Fulcrand H, Cameira dos Santos P, Sarni-Manchado P et al (1996b) Structure of new anthocyanin-derived wine pigments. J Chem Soc Perkin Trans 1(7):735–739

    Google Scholar 

  • Fulcrand H, Cheynier V, Oszmianski J, Moutounet M (1997a) An oxidized tartaric acid residue as a new bridge potentially competing with acetaldehyde in flavan-3-ol condensation. Phytochemistry 46:223–227

    CAS  Google Scholar 

  • Fulcrand H, Hapiot P, Neta P et al (1997b) Electrochemical and radiolytic oxidation of naturally occurring phenols. Analusis 25:M38–M43

    CAS  Google Scholar 

  • Fulcrand H, Remy S, Souquet JM et al (1999a) Identification of wine tannin oligomers by on-line liquid chromatography electrospray ionisation mass spectrometry. J Agric Food Chem 47:1023–1028

    PubMed  CAS  Google Scholar 

  • Fulcrand H, Guyot S, Le Roux E et al (1999b) Electrospray contribution to structural analysis of condensed tannins oligomers and polymers. In: Hemingway R (ed) Plant polyphenols 2: biogenesis, chemical properties, and significance. Plenum Press, New York, pp 223–244

    Google Scholar 

  • Fulcrand H, Dueñas M, Salas E, Cheynier V (2006) Phenolic reactions during winemaking and aging. Am J Enol Vitic 57:289–297

    CAS  Google Scholar 

  • Fulcrand H, Mané C, Preys S et al (2008) Direct mass spectrometry approaches to characterize polyphenol composition of complex samples. Phytochemistry 69:3131–3138

    PubMed  CAS  Google Scholar 

  • Garcia-Alonso M, Rimbach G, Sasa M et al (2005) Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins. Mol Nutr Food Res 49:1112–1119

    PubMed  CAS  Google Scholar 

  • Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kafer AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589

    PubMed  CAS  Google Scholar 

  • Gil AM, Duarte IF, Godejohann M, Braumann U, Maraschin M, Spraul M (2003) Characterization of the aromatic composition of some liquid foods by nuclear magnetic resonance spectrometry and liquid chromatography with nuclear magnetic resonance and mass spectrometric detection. Anal Chim Acta 488:35–51

    CAS  Google Scholar 

  • Goldstein JL, Swain T (1963) Changes in tannins in ripening fruits. Phytochemistry 2:371–383

    CAS  Google Scholar 

  • Gonçalves R, Mateus N, Pianet I et al (2011) Mechanisms of tannin-induced trypsin inhibition: a molecular approach. Langmuir 27:13122–13129

    PubMed  Google Scholar 

  • González-Manzano S, Mateus N, de Freitas V, Santos-Buelga C (2008) Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments. Eur Food Res Technol 227:83–92

    Google Scholar 

  • González-Manzano S, Dueñas M, Rivas-Gonzalo JC et al (2009) Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chem 114:649–656

    Google Scholar 

  • Gonzalez-Paramas AM, Lopes da Silva F, Martin-Lopez P et al (2006) Flavanol-anthocyanin condensed pigments in plant extracts. Food Chem 94:428–436

    CAS  Google Scholar 

  • Gould KS (2010) Muriel wheldale Onslow and the rediscovery of anthocyanin function in plants. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances in polyphenol research, vol 2. Blackwell, London, pp 206–225

    Google Scholar 

  • Goupy P, Dufour C, Loonis M, Dangles O (2003) Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J Agric Food Chem 5:615–622

    Google Scholar 

  • Goupy P, Bautista-Ortin AB, Fulcrand H, Dangles O (2009) Antioxidant activity of wine pigments derived from anthocyanins: hydrogen transfer reactions to the DPPH radical and inhibition of the heme-induced peroxidation of linoleic acid. J Agric Food Chem 57:5762–5770

    PubMed  CAS  Google Scholar 

  • Gu L, Kelm M, Hammerstone JF et al (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J Agric Food Chem 50:4852–4860

    PubMed  CAS  Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF et al (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521

    PubMed  CAS  Google Scholar 

  • Gu L, Kelm M, Hammerstone JF et al (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    PubMed  CAS  Google Scholar 

  • Guinard J-X, Pangborn RM, Lewis MJ (1986) The time-course of astringency in wine upon repeated ingestion. Am J Enol Vitic 37:184–189

    Google Scholar 

  • Guyot S, Vercauteren J, Cheynier V (1996) Colourless and yellow dimers resulting from (+)-catechin oxidative coupling catalysed by grape polyphenoloxidase. Phytochem 42:1279–1288

    CAS  Google Scholar 

  • Guyot S, Doco T, Souquet JM et al (1997) Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. Kermerrien) skin and pulp. Phytochem 44:351–357

    CAS  Google Scholar 

  • Guyot S, Guernevé CL, Marnet N, Drilleau JF (1999) In: Gross GG, Hemingway RW, Yoshida T, Branham S (eds) Plant polyphenols 2, chemistry, biology, pharmacology, ecology. Kluwer/Academic Plenum Publishers, New York, pp 211–222

    Google Scholar 

  • Hagerman AE (2012) Fifty years of polyphenol–protein complexes. In: Cheynier V, Sarni-Manchado P, Quideau S (eds) Recent advances in polyphenol research, vol 3. Blackwell, London (in press)

  • Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Biol Chem 256:4494–4497

    PubMed  CAS  Google Scholar 

  • Hagerman AE, Robbins CT (1987) Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. J Chem Ecol 13:1243–1254

    CAS  Google Scholar 

  • Hagerman AE, Robbins CT (1993) Specificity of tannin binding salivary proteins relative to diet selection by mammals. Can J Zool 71:628–633

    CAS  Google Scholar 

  • Hagerman AE, Rice ME, Ritchard NT (1998) Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin(4 → 8)catechin (procyanidin). J Agric Food Chem 46:2590–2595

    CAS  Google Scholar 

  • Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276S

    PubMed  CAS  Google Scholar 

  • Harbowy ME, Balentine DA (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480

    CAS  Google Scholar 

  • Haslam E (1980) In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistry 19:2577–2582

    CAS  Google Scholar 

  • Haslam E (1998) Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge

    Google Scholar 

  • Haslam E (2003) Thoughts on thearubigins. Phytochemistry 64:61–73

    PubMed  CAS  Google Scholar 

  • Haslam E (2007) Vegetable tannins—lessons of a phytochemical lifetime. Phytochemistry 68:2713–2721

    PubMed  CAS  Google Scholar 

  • Haslam E, Cai Y (1994) Plant polyphenols (vegetable tannins)—gallic acid metabolism. Nat Prod Rep 11:41–66

    PubMed  CAS  Google Scholar 

  • He J, Carnalho ARF, Mateus N, de Freitas V (2010) Spectral features and stability of oligomeric pyranoanthocyanin-flavanol pigments isolated from red wines. J Agric Food Chem 58:9249–9258

    CAS  Google Scholar 

  • Hellstrom J, Torronen AR, Mattila PH (2009) Proanthocyanidins in common food products of plant origin. J Agric Food Chem 57:7899–7906

    PubMed  CAS  Google Scholar 

  • Hollman PC, Cassidy A, Comte B, et al (2011) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 141:989S–1009S

    Google Scholar 

  • Joslyn MA, Goldstein JL (1964) Astringency of fruits and fruit products in relation to phenolic content. Adv Food Res 13:179–217

    PubMed  CAS  Google Scholar 

  • Jurd L (1969) Review of polyphenol condensation reactions and their possible occurrence in the aging of wines. Am J Enol Vitic 20:191–195

    CAS  Google Scholar 

  • Karchesy JJ, Hemingway RW (1980) Loblolly pine bark polyflavanoids. J Agric Food Chem 28:222–228

    CAS  Google Scholar 

  • Kelm MA, Johnson JC, Robbins RJ et al (2006) High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. J Agric Food Chem 54:1571–1576

    PubMed  CAS  Google Scholar 

  • Kennedy JA, Taylor AW (2003) Analysis of proanthocyanidins by high-performance gel permeation chromatography. J Chromatogr A 995:99–107

    PubMed  CAS  Google Scholar 

  • Kennedy JA, Mattews MA, Waterhouse AL (2000) Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55:77–85

    PubMed  CAS  Google Scholar 

  • Kennedy JA, Hayasaka Y, Vidal S et al (2001) Composition of grape skin proanthocyanidins at different stages of berry development. J Agric Food Chem 49:5348–5355

    PubMed  CAS  Google Scholar 

  • Koponen JM, Happonen AM, Mattila PH, Törrönen AR (2007) Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem 55:1612–1619

    PubMed  CAS  Google Scholar 

  • Koupai-Abyazani MR, McCallum J, Bohm BA (1992) Identification of the constituent flavanoid units in sainfoin proanthocyanidins by reversed-phase high-performance liquid chromatography. J Chromatogr 594:117–123

    CAS  Google Scholar 

  • Koupai-Abyazani MR, McCallum J, Muir AD et al (1993) Purification and characterization of a proanthocyanidin polymer from seed of alfalfa (Medicago sativa Cv. Beaver). J Agric Food Chem 41:565–569

    CAS  Google Scholar 

  • Krueger CG, Dopke NC, Treichel PM, Folts J, Reed JD (2000) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract. J Agric Food Chem 48:1663–1667

    Google Scholar 

  • Kuhnert N (2010) Unraveling the structure of the black tea thearubigins. Arch Biochem Biophys 501:37–51

    PubMed  CAS  Google Scholar 

  • Kuhnert N, Drynan JW, Obuchowicz J et al (2010) Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Commun Mass Spectrom 24:3387–3404

    PubMed  CAS  Google Scholar 

  • Lambert SG, Asentorfer RE, Williamson NM et al (2011) Copigmentation between malvidin-3-glucoside and some wine constituents and its importance to colour expression in red wine. Food Chem 125:106–115

    CAS  Google Scholar 

  • Le Bourvellec C, Renard CMGC (2005) Non-covalent interaction between procyanidins and apple cell wall material. Part II: quantification and impact of cell wall drying. Biochim Biophys Acta General Subjects 1725:1–9

    Google Scholar 

  • Le Roux E, Doco T, Sarni-Manchado P et al (1998) Characterization of A-type proanthocyanidins from pericarp of litchi (Litchi sinensis Sonn.). Phytochemistry 48:1251–1258

    Google Scholar 

  • Lea AGH (1978) The phenolics of cider: oligomeric and polymeric procyanidins. J Sci Food Agric 29:471–477

    PubMed  CAS  Google Scholar 

  • Lee JE, Hwang GS, van Den Berg F, Lee CH, Hong YS (2009) Anal Chim Acta 648:71–76

    Google Scholar 

  • Li XC, Ferreira D, Ding Y (2010) Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool. Curr Org Chem 14:1678–1697

    CAS  Google Scholar 

  • Liao H, Cai Y, Haslam E (1992) Polyphenol interactions. 6. Anthocyanins-copigmentation and color changes in red wines. J Sci Food Agric 59:299–305

    CAS  Google Scholar 

  • Luck G, Liao H, Murray NJ et al (1994) Polyphenols, astringency and prolin-rich proteins. Phytochemistry 37:357–371

    PubMed  CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York

    Google Scholar 

  • Manach C, Hubert J, Llorach R, Scalbert A (2009) Review: the complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res 53:1303–1315

    Google Scholar 

  • Mané C, Souquet JM, Olle D et al (2007a) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of Champagne grape varieties. J Agric Food Chem 55:7224–7233

    PubMed  Google Scholar 

  • Mané C, Sommerer N, Yalcin T et al (2007b) Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal Chem 79:2239–2248

    PubMed  Google Scholar 

  • Mareca Cortès I, de Campos Salcedo M (1957) Sur la combinaison de I’ethanal et des polyphénols dans les vins rouges. Ind Agr Aliment 74:103–106

    Google Scholar 

  • Markham KR, Geiger H (1994) 1H nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in hexadeuterodimethylsulfoxide. In: Harborne JB (ed) The flavonoids, advances in research since 1986. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Martin AJP, Synge RLM (1941) A new form of chromatogram employing two liquid phases. Biochem J 35:1358–1368

    PubMed  CAS  Google Scholar 

  • Martin R, Lilley TH, Bailey NA et al (1986). Polyphenol-caffeine complexation. J Chem Soc Chem Commun 105–106

  • Mateus N, Silva AM, Rivas-Gonzalo JC et al (2003) A new class of blue anthocyanin-derived pigments isolated from red wines. J Agric Food Chem 51:1919–1923

    PubMed  CAS  Google Scholar 

  • Mateus N, Oliveira J, Pissarra J et al (2006) A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chem 97:689–695

    CAS  Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U et al (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    PubMed  CAS  Google Scholar 

  • Maury C, Sarni-Manchado P, Lefèbvre S et al (2001) Influence of fining with different molecular weight gelatins on proanthocyanidin composition and perception of wines. Am J Enol Vitic 52:140–145

    CAS  Google Scholar 

  • Mazerolles G, Preys S, Bouchut C et al (2010) Combination of several mass spectrometry ionization modes: a multiblock analysis for a rapid characterization of the red wine polyphenolic composition. Anal Chim Acta 678:195–202

    PubMed  CAS  Google Scholar 

  • McManus JP, Davis KG, Beart JE et al (1985) Polyphenol interactions. Part 1. Introduction: some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J Chem Soc Perkin Trans II:1429–1438

    Google Scholar 

  • McMurrough I, McDowell I (1978) Chromatographic separation and automated analysis of flavanols. Anal Biochem 91:92–100

    PubMed  CAS  Google Scholar 

  • Mehansho H, Butler LG, Carlson DM (1987) Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Ann Rev Nutr 7:423–440

    CAS  Google Scholar 

  • Morel-Salmi C, Souquet JM, Bes M, Cheynier V (2006) Effect of flash release treatment on phenolic extraction and wine composition. J Agric Food Chem 54:4270–4276

    PubMed  CAS  Google Scholar 

  • Mouls L, Mazauric JP, Sommerer N et al (2011) Comprehensive study of condensed tannins by ESI mass spectrometry: average degree of polymerisation and polymer distribution determination from mass spectra. Anal Bioanal Chem 400:613–623

    PubMed  CAS  Google Scholar 

  • Murray NJ, Williamson MP (1994) Conformational study of a salivary proline-rich protein repeat sequence. Eur J Biochem 219:915–921

    PubMed  CAS  Google Scholar 

  • Murray NJ, Williamson MP, Lilley TH, Haslam E (1994) Study of the interaction between proline-rich proteins and a polyphenol by 1H NMR spectroscopy. Eur J Biochem 219:923–935

    PubMed  CAS  Google Scholar 

  • Nave F, Teixeira N, Mateus N, de Freitas V (2010) The fate of flavanol–anthocyanin adducts in wines: study of their putative reaction patterns in the presence of acetaldehyde. Food Chem 121:1129–1138

    CAS  Google Scholar 

  • Nayak A, Carpenter GH (2008) A physiological model of tea-induced astringency. Physiol Behav 95:290–294

    PubMed  CAS  Google Scholar 

  • Neveu V, Perez-Jiménez J, Vos F et al (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database. doi:10.1093/database/bap024

  • Nilsson M, Duarte I, Delgadillo I et al (2004) High-resolution NMR and diffusion-ordered spectroscopy of port wine. J Agric Food Chem 52:3736–3743

    PubMed  CAS  Google Scholar 

  • Nishioka I, Nonaka G, Tanaka T, Sakai T, Mihashi K (1990) Tannins and related compounds. 97. Structural revision of C-glycosidic ellagitannins, castalagin, vescalagin, casuarinin and stachyurin and related hydrolysable ellagitannins. Chem Pharm Bull 38:2151–2156

    Google Scholar 

  • Nonier MF, Absalon C, Vivas N et al (2004) Application of off-line size-exclusion chromatographic fractionation—matrix assisted laser desorption ionization time of flight mass spectrometry for proanthocyanidin characterization. J Chromatogr A 1033:291–297

    PubMed  CAS  Google Scholar 

  • Ohnishi-Kameyama M, Yanagida A, Kanda T, Nagata T (1997) Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry. Rapid Comm Mass Spectrom 11:31–36

    CAS  Google Scholar 

  • Okuda T (1999) Novel aspects of tannins—renewed concepts and structure-activity relationships. Curr Org Chem 3:609–622

    CAS  Google Scholar 

  • Okuda T, Yoshida T, Hatano T, Koga T, Toh N, Kuriyama K (1982a) Circular dichroism of hydrolysable tannins. I. Ellagitannins and gallotannins. Tetrahedron Lett 23:3937–3940

    CAS  Google Scholar 

  • Okuda T, Yoshida T, Hatano T, Koga T, Toh N, Kuriyama K (1982b) Circular dichroism of hydrolysable tannins. II. Dehydroellagitannins. Tetrahedron Lett 23:3941–3944

    CAS  Google Scholar 

  • Okuda T, Hatano T, Yoshida T (1990) Oligomeric hydrolysable tannins, a new class of plant polyphenols. Heterocycles 30:1195–1218

    CAS  Google Scholar 

  • Okuda T, Hatano T, Yoshida T (1993) Polyphenols of new types and their correlation with plant systematics. Phytochemistry 32:507–522

    CAS  Google Scholar 

  • Okuda T, Yoshida T, Hatano T (1995) Hydrolyzable tannins and related polyphenols. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm Ch (eds) Progress in the chemistry of organic natural products, vol 66. Springer, Vienna, pp 1–117

    Google Scholar 

  • Okuda T, Yoshida T, Hatano T, Ito H (2009) Ellagitannins renewed the concept of tannins. In: Quideau S (ed) Chemistry and biology of ellagitannins—an underestimated class of bioactive plant polyphenols. World Scientific, Singapore, pp 1–54

    Google Scholar 

  • Oliveira C, Mateus N, Silva A, de Freitas V (2009) Equilibrium forms of Vitisin B pigments in an aqueous system studied by NMR and visible spectroscopy. J Phys Chem 113:11352–11358

    CAS  Google Scholar 

  • Oliveira J, Azevedo J, Silva AMS et al (2010) Pyranoanthocyanin dimers: a new family of turquoise blue anthocyanin-derived pigments found in Port wine. J Agric Food Chem 58:5154–5159

    PubMed  CAS  Google Scholar 

  • Ollis WD, Brown AG, Haslam E et al (1966) The constitution of theaflavin. Tetrahedron Lett 1193–1204

  • Oszmianski J, Wojdylo A (2009) Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur Food Res Technol 228:623–631

    CAS  Google Scholar 

  • Pascal C, Poncet-Legrand C, Imberty A et al (2007) Interactions between a non glycosylated human proline rich protein and flavan-3-ols. J Agric Food Chem 55:4895–4901

    PubMed  CAS  Google Scholar 

  • Pascal C, Pate F, Cheynier V, Delsuc M-A (2009) Study of the interactions between a proline rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands. Biopolymers 91:745–756

    PubMed  CAS  Google Scholar 

  • Pérez-Jiménez J, Arranz S, Saura-Calixto F (2009) Proanthocyanidin content in foods is largely underestimated in the literature data: an approach to quantification of the missing proanthocyanidins. Food Res Internat 42:1381–1388

    Google Scholar 

  • Pirker KF, Oliveira J, de Freitas V et al (2011) Antiradical properties of red wine portisins. J Agric Food Chem 59:11833–11837

    PubMed  CAS  Google Scholar 

  • Poncet-Legrand C, Cartalade D, Putaux JL et al (2003) Flavan-3-ol aggregation in model ethanolic solutions: incidence of polyphenol structure, concentration, ethanol content and ionic strength. Langmuir 19:10563–10572

    CAS  Google Scholar 

  • Poncet-Legrand C, Doco T, Williams P, Vernhet A (2007) Inhibition of grape seed tannin aggregation by wine mannoproteins: effect of polysaccharide molecular weight. Am J Enol Vitic 58:87–91

    Google Scholar 

  • Poncet-Legrand C, Cabane B, Bautista-Ortin AB et al (2010) Tannin oxidation: intra- versus intermolecular reactions. Biomacromolecules 11:2376–2386

    PubMed  CAS  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V et al (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    PubMed  CAS  Google Scholar 

  • Prieur C, Rigaud J, Cheynier V, Moutounet M (1994) Oligomeric and polymeric procyanidins from grape seeds (Vitis vinifera). Phytochemistry 36:781–784

    CAS  Google Scholar 

  • Quideau S (2009) Chemistry and biology of ellagitannins—an underestimated class of bioactive plant polyphenols. World Scientific, Singapore

    Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621

    CAS  Google Scholar 

  • Remy S, Fulcrand H, Labarbe B et al (2000) First confirmation in red wine of products resulting from direct anthocyanin-tannin reactions. J Sci Food Agric 80:745–751

    CAS  Google Scholar 

  • Revilla I, Perez-Magarino S, Gonzalez-SanJose ML, Beltran S (1999) Identification of anthocyanin derivatives in grape skin extracts and red wines by liquid chromatography with diode array and mass spectrometric detection. J Chromatogr A 847:83–90

    CAS  Google Scholar 

  • Rigaud J, Escribano-Bailon MT, Prieur C et al (1993) Normal-phase high-performance liquid chromatographic separation of procyanidins from cacao beans and grape seeds. J Chromatogr 654:255–260

    CAS  Google Scholar 

  • Riou V, Vernhet A, Doco T, Moutounet M (2002) Aggregation of grape seed tannins in model—effect of wine polysaccharides. Food Hydrocoll 16:17–23

    CAS  Google Scholar 

  • Roberts EAH, Cartwright RA, Oldschool M (1959) The phenolic substances of manufactured tea. I. Fractionation and paper chromatography of water-soluble substances. J Sci Food Agric 8:72–80

    Google Scholar 

  • Roberts EAH (1962) Economic importance of flavonoid substances: tea fermentation. In: Geissman TA (ed) The chemistry of flavonoid compounds. Pergamon Press, Oxford, pp 468–512

  • Rosenheim O (1920) XXI. Observations on anthocyanins. The anthocyanins of the young leaves of the grapevine. Biochem J 14:178–188

    PubMed  CAS  Google Scholar 

  • Sacchi LK, Bisson LF, Adams DO (2005) A review of the effect of winemaking techniques on phenolic extraction in red wines. Am J Enol Vitic 56:197–206

    CAS  Google Scholar 

  • Salas E, Atanasova V, Poncet-Legrand C et al (2004a) Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal Chim Acta 513:325–332

    CAS  Google Scholar 

  • Salas E, Le Guernevé C, Fulcrand H et al (2004b) Structure determination and colour properties of a new directly linked flavanol–anthocyanin dimer. Tetrahedron Lett 45:8725–8729

    CAS  Google Scholar 

  • Salas E, Dueñas M, Schwartz M et al (2005) Characterization of pigments from different high speed countercurrent chromatography wine fractions. J Agric Food Chem 53:4536–4546

    PubMed  CAS  Google Scholar 

  • Sarni-Manchado P et al (1996) Stability and color of unreported wine anthocyanin-derived pigments. J Food Sci 61:938–941

    CAS  Google Scholar 

  • Saucier C, Little D, Glories Y (1997a) First evidence of acetaldehyde-flavanol condensation products in red wine. Am J Enol Vitic 48:370–373

    CAS  Google Scholar 

  • Saucier C, Bourgeois G, Vitry C et al (1997b) Characterization of (+)-catechin-acetaldehyde polymers: a model for colloidal state of wine polyphenols. J Agric Food Chem 45:1045–1049

    CAS  Google Scholar 

  • Self R, Eagles J, Galetti GC, Mueller-Harvey I (1986) Fast atom bombardment mass spectrometry of polyphenols (syn. vegetable tannins). Biomed Environ Mass Spectrom 13:449–468

    CAS  Google Scholar 

  • Shen Z, Haslam E, Falshaw CP, Begley MJ (1986) Procyanidins and polyphenols of Larix gmelini bark. Phytochemistry 25:2629–2635

    CAS  Google Scholar 

  • Simon C, Barathieu K, Laguerre M et al (2003) Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach. Biochemistry 42:10385–10395

    PubMed  CAS  Google Scholar 

  • Singleton VL (1995) Maturation of wines and spirits: comparisons, facts, and hypotheses. Am J Enol Vitic 46:98–115

    CAS  Google Scholar 

  • Singleton VL, Berg HW, Guymont JF (1964) Anthocyanin color level in port-type wines as affected by the use of wine spirits containing aldehydes. Am J Enol Vitic 15:75–81

    CAS  Google Scholar 

  • Slade D, Ferreira D, Marais JPJ (2005) Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 66:2177–2215

    PubMed  CAS  Google Scholar 

  • Somers TC (1966) Wine tannins—isolation of condensed flavonoid pigments by gel-filtration. Nature 209(368–3):70

    Google Scholar 

  • Somers TC (1971) The polymeric nature of wine pigments. Phytochemistry 10:2175–2186

    CAS  Google Scholar 

  • Souquet JM, Cheynier V, Brossaud F, Moutounet M (1996) Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509–512

    CAS  Google Scholar 

  • Souquet JM, Drinkine J, Morel-Salmi C et al (2008) Phenolic compounds of Syrah. Proc Int Syrah Symp Lyon 75–81

  • Sousa C, Mateus N, Silva AMS et al (2007) Structural and chromatic characterization of a new malvidin 3-glucoside-vanillyl-catechin pigment. Food Chem 102:1344–1351

    CAS  Google Scholar 

  • Stringano E, Gea A, Salminen JP, Mueller-Harvey I (2011) Simple solution for a complex problem: proanthocyanidins, galloyl glucoses and ellagitannins fit on a single calibration curve in high performance-gel permeation chromatography. J Chromatogr A 1218:7804–7812

    PubMed  CAS  Google Scholar 

  • Taira S, Ono M (1997) Reduction of astringency in persimon caused by adhesion of tannins to cell wall fragments. Acta Horticulturae 436:235–241

    CAS  Google Scholar 

  • Taira S, Ono M, Matsumoto N (1998) Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol Technol 12:265–271

    Google Scholar 

  • Takahata Y, Ohnishi-Kameyama M, Furuta S et al (2001) Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J Agric Food Chem 49:5843–5847

    PubMed  CAS  Google Scholar 

  • Takino Y, Ferretti A, Flanagan V et al (1965) Structure of theaflavin, a polyphenol of black tea. Tetrahedron Lett 4019–4025

  • Tamura F, Tanabe K, Itai A, Hasegawa M (1999) Characteristics of acetaldehyde accumulation and removal of astringency with ethanol and carbon dioxide treatments in ‘Saijo’ persimmon fruit. J Jap Soc Hort Sci 68:1178–1183

    CAS  Google Scholar 

  • Tanaka T, Takahashi R, Kouno I, Nonaka K (1994) Chemical evidence for the de-astringency (insolubilization of tannins) of persimmon fruit. J Chem Soc Perkin Trans 1:3013–3022

    Google Scholar 

  • Tanaka T, Matsuo Y, Kouno I (2010) Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11:14–40

    CAS  Google Scholar 

  • Tarascou I, Mazauric JP, Meudec E et al (2011) Characterization of genuine and derived cranberry proanthocyanidins by LC-ESI-MS. Food Chem 128:802–810

    CAS  Google Scholar 

  • Taylor AW, Barofsky E, Kennedy JA et al (2003) Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J Agric Food Chem 51:4101–4110

    PubMed  CAS  Google Scholar 

  • Thompson RS, Jacques D, Haslam E, Tanner DJN (1972) Plant proanthocyanidins. Part. I. Introduction: the isolation, structure, and distribution in nature of plant procyanidins. J Chem Soc Perkin Trans I:1387–1399

    Google Scholar 

  • Timberlake CF, Bridle P (1976) Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am J Enol Vitic 27:97–105

    CAS  Google Scholar 

  • Torronen R (2009) Sources and health effects of dietary ellagitannins. In: Quideau S (ed) Chemistry and biology of ellagitannins—an underestimated class of bioactive plant polyphenols. World Scientific, Singapore, pp 298–319

    Google Scholar 

  • Treutter D, Santos-Buelga C, Gutmann M, Kolodziej H (1994) Identification of flavan-3-ol and procyanidins by high-performance liquid chromatography and chemical reaction detection. J Chromatogr A 667:290–297

    CAS  Google Scholar 

  • Uclés Santos JR, Bakry F, Brillouet JM (2010) A preliminary chemotaxonomic study on the condensed tannins of green banana flesh in the Musa genus. Biochem Syst Ecol 38:1010–1017

    Google Scholar 

  • US Department of Agriculture, Agricultural Research Service (2004) USDA Database for the proanthocyanidin content of selected foods. http://www.nal.usda.gov/fnic/foodcomp/Data/PA/PA.pdf

  • US Department of Agriculture, Agricultural Research Service (2011) USDA Database for the flavonoid content of selected foods, Release 3.0. http://www.ars.usda.gov/nutrientdata/flav

  • Vernhet A, Dubascoux S, Cabane B et al (2011) Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering. Anal Bioanal Chem 401:1559–1569

    PubMed  Google Scholar 

  • Verries C, Guiraud JL, Souquet JM et al (2008) Validation of an extraction method on whole pericarp of grape berry (Vitis vinifera L. cv. Shiraz) to study biochemical and molecular aspects of flavan-3-ol synthesis during berry development. J Agric Food Chem 56:5896–8904

    PubMed  CAS  Google Scholar 

  • Vidal S, Cattalade D, Souquet JM et al (2002) Changes in proanthocyanidin chain-length in wine-like model solutions. J Agric Food Chem 50:2261–2266

    PubMed  CAS  Google Scholar 

  • Vidal S, Francis L, Guyot S et al (2003a) The mouth-feel properties of grape and apple proanthocyanidins in a wine like medium. J Sci Food Agric 83:564–573

    CAS  Google Scholar 

  • Vidal S, Courcoux P, Francis L et al (2003b) Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual Pref 15:209–217

    Google Scholar 

  • Vidal S, Meudec E, Cheynier V et al (2004a) Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins. J Agric Food Chem 52:7144–7151

    PubMed  CAS  Google Scholar 

  • Vidal S, Francis L, Kwiatkowski M et al (2004b) Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal Chim Acta 513:57–65

    CAS  Google Scholar 

  • Weber HA, Hodges AE, Guthrie JR et al (2007) Comparison of proanthocyanidins in commercial antioxidants: grape seed and pine bark extracts. J Agric Food Chem 55:148–156

    PubMed  CAS  Google Scholar 

  • Wildenradt HL, Singleton VL (1974) The production of acetaldehyde as a result of oxidation of phenolic compounds and its relation to wine aging. Am J Enol Vitic 25:119–126

    CAS  Google Scholar 

  • Williams VM, Porter LJ, Hemingway RW (1983) Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22:569–572

    CAS  Google Scholar 

  • Williamson G, Stalmach A (2012). Absorption and metabolism of dietary chlorogenic acids and procyanidins. In: Cheynier V, Sarni-Manchado P, Quideau S (eds) Recent advances in polyphenol research, vol 3. Blackwell, London (in press)

  • Willstätter R, Everest AE (1913) Untersuchungen uber die Anthocyane. I. Uber den Farbstoff der Kornblume. Justus Liebigs Annalen der Chemie 401:189–232

    Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opinion Plant Biol 5:218–223

    CAS  Google Scholar 

  • Wirth J, Morel-Salmi C, Souquet JM et al (2010) The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines. Food Chem 123:107–116

    CAS  Google Scholar 

  • Wirth J, Caillé S, Souquet JM et al (2012) Impact of post-bottling oxygen exposure on the sensory characteristics and phenolic composition of Grenache rosé wines, Food Chem. Accepted Dec 2011

  • Wojdylo A, Oszmianski J, Laskowski P et al (2008) Polyphenolic compounds and antioxidant activity of new and old apple varieties. J Agric Food Chem 56:6520–6530

    PubMed  CAS  Google Scholar 

  • Wolfender JL, Ndjoko K, Hostettmann K (2001) The potential opf LC-NMR in phytochemical analysis. Phytochem Anal 12:2–22

    PubMed  CAS  Google Scholar 

  • Wolfender JL, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance–mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A 1000:437–455

    PubMed  CAS  Google Scholar 

  • Wolfender JL, Queiroz EF, Hostettmann K (2005) Phytochemistry in the microgram domain—a LC–NMR perspective. Magn Reson Chem 43:697–709

    PubMed  CAS  Google Scholar 

  • Wu LC, Prior R (2005a) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599

    PubMed  CAS  Google Scholar 

  • Wu LC, Prior R (2005b) Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J Agric Food Chem 53:3101–3113

    PubMed  CAS  Google Scholar 

  • Yanagida A, Kanda T, Shoji T, Ohnishi-Kameyama M, Nagata T (1999) Fractionation of apple procyanidins by size-exclusion chromatography. J Chromatogr A 855:181–190

    PubMed  CAS  Google Scholar 

  • Yanagida A, Kanda T, Takashashi T et al (2000) Fractionation of apple procyanidins according to their degree of polymerization by normal-phase high-performance liquid chromatography. J Chromatogr A 890:251–259

    PubMed  CAS  Google Scholar 

  • Yang Y, Chien M (2000) Characterization of grape procyanidins using highperformance liquid chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Agric Food Chem 48:3990–3996

    PubMed  CAS  Google Scholar 

  • Yoshida K, Oyama KI, Kondo T (2012) Chemistry of flavonoids in color development. In: Cheynier V, Sarni-Manchado P, Quideau S (eds) Recent advances on polyphenol research, vol 3. Blackwell, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Cheynier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheynier, V. Phenolic compounds: from plants to foods. Phytochem Rev 11, 153–177 (2012). https://doi.org/10.1007/s11101-012-9242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9242-8

Keywords

Navigation