Phytochemistry Reviews

, Volume 11, Issue 2–3, pp 227–244 | Cite as

Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health

  • Mercedes Muzquiz
  • Alejandro Varela
  • Carmen Burbano
  • Carmen Cuadrado
  • Eva Guillamón
  • Mercedes M. Pedrosa
Article

Abstract

Legume seeds are employed as a protein source for animal and human nutrition not only for their nutritional value (high in protein, lipids and dietary fibre), but also their adaptability to marginal soils and climates. Human consumption of legumes has been increased in recent years, being regarded as beneficial food ingredients. Legume seeds contain a great number of compounds which qualify as bioactive compounds with significant potentials benefits to human health. These compounds vary considerably in their biochemistry and they can be proteins, glycosides, tannins, saponins, alkaloids, etc. Hence, methods for their extraction, determination and quantification are specific of each compound. They do not appear equally distributed in all legumes, and their physiological effects are diverse. Some of these compounds are important in plant defence mechanisms against predators or environmental conditions. Others are reserve compounds, accumulated in seeds as energy stores in readiness for germination. Processing generally improves the nutrient profile of legume seed by increasing in vitro digestibility of proteins and carbohydrates and at the same time there are reductions in some antinutritional compounds. Most antinutritional factors are heat-labile, such as protease inhibitors and lectins, so thermal treatment would remove any potential negative effects from consumption. On the other hand tannins, saponins and phytic acid are heat stable but can be reduced by dehulling, soaking, germination and/or fermentation. New directions in bioactive compounds research in the last decade have led to major developments in our understanding of their role in nutrition. The scientific interest in these compounds is now also turning to studies of their possible useful and beneficial applications as gut, metabolic and hormonal regulators and as probiotic/prebiotic agents.

Keywords

Antinutrients Phytochemicals Processing Pulses 

References

  1. Alonso R, Orúe E, Marzo F (1998) Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seeds. Food Chem 63:505–512Google Scholar
  2. Alonso R, Rubio LA, Muzquiz M, Marzo F (2001) The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals. Animal Feed Sci Technol 94:1–13Google Scholar
  3. Alvarez-Alvarez J, Guillamón E, Crespo JF, Cuadrado C, Burbano C, Rodriguez J, Fernandez C, Muzquiz M (2005) Effects of extrusion, boiling, autoclaving and microwave heating on lupin allergenicity. J Agric Food Chem 23:1294–1298Google Scholar
  4. Amstrong WB, Kennedy AR, Wan XS, Atiba J, McLaren E, Meyskens FL (2000) Single-dose administration of Bowman-Birk inhibitor concentrate in patients with oral leukoplakia. Cancer Epidemiol Biom Prev 9:43–47Google Scholar
  5. Aranceta J, Lobo F, Viedma P, Salvador-Castell G, de Victoria EM, Ortega RM, Bello L, Tur-Marí JA (2009) Community nutrition in Spain: advances and drawbacks. Nutr Rev 67(Suppl 1):135–139Google Scholar
  6. Aranda P, Dostalova J, Frias J, Lopez-Jurado M, Kozlowska H, Pokorny J, Urbano G, Vidal-Valverde C, Zdyunczyk Z (2000) Nutrition. In: Hedley CL (ed) Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characteristics. CAB International, Wallingford, pp 61–87Google Scholar
  7. Arora SK (1983) Chemistry and biochemistry of legumes. IFIS Publishing, New DelhiGoogle Scholar
  8. Asensio-Vegas et al (2007) 6th European conference on grain legumes. Lisbon (Portugal). Abstracts, p 185Google Scholar
  9. Ayet G, Muzquiz M, Burbano C, Robredo LM, Cuadrado C, Price K (1996) Determinación de saponinas en las principales leguminosas cultivadas en España. Food Sci Technol Int 2:96–100Google Scholar
  10. Babaoglu M, Duvey MR, Power JB (2000) Genetic engineering of grain legumes: key transformation events. Ag BiotechNet 2:1–14Google Scholar
  11. Bardocz S, Brown DS, Grant G, Pusztai A, Stewart JC, Palmer RM (1992) Effect of the β-adrenoceptor agonist clenbuterol and phytohemagglutinin on growth, protein-synthesis and polyamine metabolism of tissues of the rat. Br J Pharmacol 106:476–482PubMedGoogle Scholar
  12. Bardocz S, Grant G, Pusztai A, Franklin MF, Carvalho ADFU (1996) The effect of phytohaemagglutinin at different dietary concentrations on the growth, body composition and plasma insulin of the rat. Br J Nutr 76:613–626PubMedGoogle Scholar
  13. Bernabe M, Fenwick R, Frias J, Jimenez-Barbero J, Price K, Valverde S, Vidal-Valverde C (1993) Determination, by NMR spectroscopy, of the structure of ciceritol, a pseudotrisaccharide isolated from lentils. J Agric Food Chem 41(6):870–872Google Scholar
  14. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang University Sci B 9:165–191Google Scholar
  15. Brenes A, Jansman AJM, Marquardt RR (2004) Recent progress on research on the effects of antinutritional factors in legume and oil seeds in monogastric animals. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds. EAAP publication No. 110, Wageningen, pp 195–217Google Scholar
  16. Burbano C, Muzquiz M, Osagie A, Ayet G, Cuadrado C (1995) Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology. Food Chem 62:321–326Google Scholar
  17. Burbano C, Muzquiz M, Ayet G, Cuadrado C, Pedrosa MM (1999) Evaluation of antinutritional factors of selected varieties of Phaseolus vulgaris. J Sci Food Agric 79:1468–1472Google Scholar
  18. Campbell PM, Reiner D, Moore AE, Lee RY, Epstein MM, Higgins TJ (2011) Comparison of the α-amylase inhibitor-1 from common bean (Phaseolus vulgaris) varieties and transgenic expression in other legumes. Post-translational modifications and immunogenicity. J Agric Food Chem 59(11):6047–6054PubMedGoogle Scholar
  19. Campos-Vega R, Loarca-Piña GF, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482Google Scholar
  20. Castonguay Y, Nadeau P, Lechasseur P, Chounard L (1995) Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winterhardiness. Crop Sci 35:509–516Google Scholar
  21. Champ MM (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88:307–319Google Scholar
  22. Chiaiese P, Ohkama-Ohtsu N, Molving L, Godfree R, Dove D, Hocart C, Fujiwara T, Higgins TJV, Tabe LM (2004) Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J Exp Bot 55:1889–1901PubMedGoogle Scholar
  23. Clemente A, Mackenzie DA, Johnson IT, Domoney C (2004) Investigation of legume seed protease inhibitors as potential anti-carcinogenic proteins. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds. EAAP publication No. 110, Wageningen, pp 137–142Google Scholar
  24. Cuadrado C, Ayet G, Robredo LM, Tabera J, Villa R, Pedrosa MM, Burbano C, Muzquiz M (1996) Effect of natural fermentation on the content of inositol phosphates in lentils. Z-Lebensmittel-Undersuchung und-Forschung 203:268–271Google Scholar
  25. Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756Google Scholar
  26. Domoney C (1999) Inhibitors of legume seeds. In: Sewry PR, Casey R (eds) Seed proteins. Kluwer, The Netherlands, pp 697–719Google Scholar
  27. Duc G, Sixdenier G, Lila M, Furstoss V (1989) In: Huisman J, van der Poel AFB, Liener IE (eds) Recent advances of research in antinutritional factors in legume seeds. Wageningen, pp 305–313Google Scholar
  28. Duranti M (2006) Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82PubMedGoogle Scholar
  29. Egounlety M, Aworth OC (2003) Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms) Jo. J Food Eng 56:249–254Google Scholar
  30. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, Dehlink E, Loibichler C, Urbanek R, Szépfalusi Z (2004) Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res 56(4):536–540PubMedGoogle Scholar
  31. el-Adawy TA (2002) Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods Hum Nutr 57:83–97PubMedGoogle Scholar
  32. Elmafda I, Freisling H (2009) Nutritional status in Europe: methods and results. Nutr Rev 61(Suppl. 1):130–134Google Scholar
  33. European Commission Communication (2010) Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. The CAP towards 2020: Meeting the food, natural resources and territorial challenges of the future. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0672:FIN:en:PDF. Cited 28 Feb 2012
  34. Ewen SWE, Pusztai A (1999) Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet 354:1353–1354PubMedGoogle Scholar
  35. Fenwick DE, Oakenfull D (1983) Saponin content of food plants and some prepared foods. J Sci Food Agric 34:186–191PubMedGoogle Scholar
  36. Fenwick GR, Price KR, Tsukamoto C, Okubo K (1991) Saponins. In: D’Mello JPF, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge, pp 285–327Google Scholar
  37. Figueroa MOR, Mancini Filho J, Lajolo FM (1984) Ação antinutricional das fito-hemaglutininas de Phaseolus vulgaris. Archivos Latinoamericanos de Nutrición 34:489–499Google Scholar
  38. Fleming SE (1981) A study of relationships between flatus potential and carbohydrate distribution in legume seeds. J Food Sci 46:794–798Google Scholar
  39. Gatehouse JA (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12(5):409–416PubMedGoogle Scholar
  40. Gatehouse AMR, Hilder VA, Powell KS, Wang M, Davidson GM, Gatehouse LN, Down RE, Edmons HS, Boulter D, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1994) Insect resistant transgenic plants. Choosing the gene to do the job. Biochem Soc Trans 4:944–949Google Scholar
  41. Goyoaga C, Burbano C, Cuadrado C, Varela A, Guillamón E, Pedrosa MM, Muzquiz M (2008) Content and distribution of vicine, convicine and L-DOPA during germination and seedling growth of two Vicia faba L. varieties. Eur Food Res Technol 227:1537–1542Google Scholar
  42. Goyoaga C, Burbano C, Cuadrado C, Varela A, Guillamón E, Pedrosa MM, Muzquiz M (2011) Content and distribution of protein, sugars and phytates during germination and seedling growth of two Vicia faba varieties. J Food Compos Anal 24:391–397Google Scholar
  43. Grant G (1991) Legumes. In: D’Mello JPF, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge, pp 49–67Google Scholar
  44. Grant G, Murray S, Gravells E, Duguid TJ, Bardocz S, Pusztai A (1998) The body metabolism of mammals can be adversely affected by enzyme inhibitors from legume seeds. In: Jansman AJM, Hill GD, Huisman J, van der Poel AFB (eds) Proceedings of the third international workshop on antinutritional factors in legume seeds and rapeseed. Wageningen, The Netherlands, pp 233–237Google Scholar
  45. Grases F, Costa-Bauza A, Perelló J, Isern B, Vucenik I, Valiente M, Muñoz JA, Prieto RM (2006) Influence of concomitant food intake on the excretion of orally administered myo-inositol hexaphosphate in humans. J Med Food 9:72–76PubMedGoogle Scholar
  46. Greiner R, Domoney C (2004) The potential of genetically modified legume and oilseed crops for food and non-food use. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds, EAAP publication No. 110, Toledo, pp 261–276Google Scholar
  47. Greiner R, Konietzny U (1996) Phytate hydrolysis in black beans by endogenous and exogenous enzymes In: Bardocz S, Muzquiz M, Pusztai A (eds) Effects of antinutrients on the nutritional value of legume diets. Proceedings of the fourth scientific workshop, Office for Official Publications of the European Communities, Luxembourg, pp 19–26Google Scholar
  48. Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44:125–140Google Scholar
  49. Greiner R, Pedrosa MM, Muzquiz M, Ayet G, Cuadrado C, Burbano C (1998) Effect of germination on phytate content and phytase activity in legumes. In: 3rd European conference on grain legumes, Valladolid, pp 82–83Google Scholar
  50. Greiner R, Larsson-Alminger M, Carlsson N-G, Muzquiz M, Burbano C, Cuadrado C, Pedrosa MM, Goyoaga C (2002) Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. J Agric Food Chem 50:6865–6870PubMedGoogle Scholar
  51. Guillamón E, Pedrosa MM, Burbano C, Cuadrado C, Sanchez M, Muzquiz M (2008a) The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem 107:68–74Google Scholar
  52. Guillamón E, Burbano C, Cuadrado C, Muzquiz M, Pedrosa MM, Sanchez M (2008b) Effect of instant controlled pressure drop on in vitro lupin allergenicity to lupins (Lupinus albus var. Multolupa). Int Archives Allergy Immunol 145:9–14Google Scholar
  53. Gutierrez N, Duc G, Marget P, Avila CM, Suso MJ, Cubero JI, Moreno MT, Torres AM (2004) Identification of molecular markers tightly linked to low tannin and vicine-convicine content in faba beans. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds. EAAP publication No. 110, Wageningen, pp 287–290Google Scholar
  54. Haddad J, Allaf K (2007) A study of the impact of instantaneous controlled pressure drop on the trypsin inhibitors of soybean. J Food Eng 79:353–357Google Scholar
  55. Haddad J, Muzquiz M, Allaf K (2006) Treatment of lupin seed using the instantaneous controlled pressure drop technology to reduce alkaloid content. Food Sci Technol Int 12:365–370Google Scholar
  56. Haddad J, Greiner R, Allaf K (2007) Effect of instantaneous controlled pressure drop on the phytate content of lupin. Swiss Soc Food Sci Technol 40:448–453Google Scholar
  57. Hajós G, Osagie AU (2004) Technical and biotechnological modifications of antinutritional factors in legume and oilseeds In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds, EAAP publication No. 110, Toledo, pp 293–305Google Scholar
  58. Hajós G, Gelencsér E, Pusztai A, Bardocz S (1996) Measurements of the antinutrient contents of legume samples. In: Bardocz S, Gelencser E, Pusztai A (eds) COST98-effects of antinutrients on the nutritional value of legume diets, vol I. Office for Official Publications of the European Communities, Luxembourg, pp 130–134Google Scholar
  59. Haros M, Bielecka M, Honke J, Sanz Y (2007) Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. Int J Food Microbiol 117:76–84PubMedGoogle Scholar
  60. Hill GD (2004) Grain legumes and oilseeds-the way ahead. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds, EAAP publication No. 110, Toledo, pp 353–364Google Scholar
  61. Hill JE, Kysela D, Elimelech M (2007) Isolation and assessment of phytate-hydrolysing bacteria from the DelMarVa Peninsula. Environ Microbiol 9:3100–3107PubMedGoogle Scholar
  62. Jaffe WG, Moreneo R, Wallis V (1973) Amylase inhibitors in legume seeds. Nutr Rep Int 7:169–174Google Scholar
  63. Jenab M, Thompson LU (2002) Role of phytic acid in cancer and other diseases. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 225–248Google Scholar
  64. Jiménez-Martinez C, Pedrosa MM, Muzquiz M, Dávila-Ortiz G (2004) Elimination of quinolizidine alkaloids, α-galactosides and phenolic compounds from Lupinus campestris seed by aqueous, acid and alkaline thermal treatment In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds, EAAP publication No. 110, Toledo, pp 343–346Google Scholar
  65. Kadlec P, Bjergegaard C, Gulewicz K, Horbowicz M, Jones A, Kintia P, Kratchanov C, Kratchanova M, Lewandowicz G, Soral-Smietana M, Sorensen H, Urban J (2000) Carbohydrate chemistry. In: Hedley CL (ed) Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characteristics. CAB International, Wallingford, pp 15–59Google Scholar
  66. Kennedy AR (1995) The evidence for soybean products as cancer preventive agents. J Nutr 125:733S–743SPubMedGoogle Scholar
  67. Kennedy AR, Wan XS (2002) Effects of the Bowman-Birk inhibitor on growth, invasion, and clonogenic survival of human prostate epithelial cells and prostate cancer cells. Prostate 50:125–133PubMedGoogle Scholar
  68. Kennedy AR, Billings PC, Wan XS, Newberne PM (2002) Effects of Bowman-Birk inhibitor on rat colon carcinogenesis. Nutr Cancer 43:174–186PubMedGoogle Scholar
  69. Konietzny U, Greiner R (2003) Phytic acid: nutritional impact. In: Caballero B, Trugo L, Finglas P (eds) Encyclopaedia of food science and nutrition. Elsevier, London, pp 4555–4563Google Scholar
  70. Koratkar R, Rao AV (1997) Effect of soya bean saponins on azoxymethane-induced preneoplastic lesions in the colon of mice. Nutr Cancer 27:206–209PubMedGoogle Scholar
  71. Kozlowska H, Aranda P, Dostalova J, Frias J, Lopez-Jurado M, Kozlowska H, Pokorny J, Urbano G, Vidal-Valverde C, Zdyunczyk Z (2001) Nutrition. In: Hedley CL (ed) Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characters. CABI Publishing, Oxon, p 352Google Scholar
  72. Kuchuk N, Griga M, Kusturkova G, Ilieva-Stoilova M (2001) Biotechnology. In: Hedley CL (ed) Carbohydrates in grain legume seeds. CAB International, Wallingford, pp 145–226Google Scholar
  73. Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959Google Scholar
  74. Kuriyama S, Mendel LB (1917) The physiological behaviour of raffinose. J Biol Chem 31:125–147Google Scholar
  75. Lajolo FM, Genovese MI (2002) Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem 50:6592–6598PubMedGoogle Scholar
  76. Lajolo FM, Genovese MI, Pryme IF, Dale M, (2004) Beneficial (antiproliferative) effects of different substances. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds, EAAP publication No. 110, Wageningen, pp 123–135Google Scholar
  77. Lasheras C, Fernandez S, Patterson AM (2000) Mediterranean diet and age with respect to overall survival in institutionalized, non-smoking elderly people. Am J Clin Nutr 71:987–992PubMedGoogle Scholar
  78. Le Berre-Anton V, Bompard-Gilles C, Paya F, Rouge P (1997) Characterization and functional properties of the α-amylase inhibitor (α-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343:31–40PubMedGoogle Scholar
  79. Leterme P (2002) Recommendations by health organizations for pulse consumption. Br J Nutr 88:5239–5242Google Scholar
  80. Loewus F (2002) Biosynthesis of phytate in food grains and seeds. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 53–61Google Scholar
  81. Lopez HW, Leenhardt F, Coudray C, Rémésy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739Google Scholar
  82. Lucca P, Hurrell R, Potrycus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397Google Scholar
  83. Mahungu SM, Diaz-Mercado S, Li J, Schwenk M, Singletary K, Faller J (1999) Stability of isoflavones during extrusion processing of corn/soy mixture. J Agric Food Chem 47:279–284Google Scholar
  84. Maiti IB, Majumber AL, Biswas BB (1974) Purification and mode of action of phytase from Phaseolus aureus. Phytochemistry 13:1047–1051Google Scholar
  85. Martín-Cabrejas MA, Sanfiz B, Vidal A, Mollá E, Esteban R, López-Andréu FJ (2004) Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J Agric Food Chem 52:261–266PubMedGoogle Scholar
  86. Martínez-Villaluenga C, Frias J, Vidal-Valverde C (2008) Alpha-galactosides: antinutritional factors or functional ingredients? Crit Rev Food Sci Nutr 48:301–316PubMedGoogle Scholar
  87. Marzo F, Alonso R, Urdaneta E, Arricibita FJ, Ibañez F (2001) Nutritional quality of extruded kidney bean (Phaseolus vulgaris L. var. Pinto) and its effects on growth and skeletal muscle nitrogen fractions in rats. J Anim Sci 80:875–879Google Scholar
  88. Minihane AM, Rimbach G (2002) Iron absorption and the iron binding and anti-oxidant properties of phytic acid. Int J Food Sci Technol 37:741–748Google Scholar
  89. Mitsuoka T (1996) Intestinal flora and human health. Asia Pac J Clin Nutr 5:2–9Google Scholar
  90. Monsanto (2001) In: Cuaderno Técnico nº1. Monsanto Agricultura España, S.L. (ed)Google Scholar
  91. Mulimani VH, Rudrappa G, Supriya D (1994) α-Amylase inhibitors in chick pea (Cicer arietinum L). J Sci Food Agric 64:413–415Google Scholar
  92. Muzquiz M (2000) Factores antinutricionales en fuentes proteicas. In: Vioque J, Clemente A, Bautista J, Millán F (eds) Jornada internacional sobre proteínas alimentarías. Sevilla, SpainGoogle Scholar
  93. Muzquiz M, Wood JA (2007) Antinutritional Factors. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding & management. CABI, Wallingford, pp 143–166Google Scholar
  94. Muzquiz M, Cuadrado C, Ayet G, Robredo LM, Pedrosa MM, Burbano C (1996) Changes in non-nutrient compounds during germination. In: Bardocz S, Gelencser, E, Pusztai A (eds) Effects of antinutrients on the nutritional value of legume diets. Proceedings of the second scientific workshop in Budapest, Budapest, pp 124–129Google Scholar
  95. Muzquiz M, Burbano C, Ayet G, Pedrosa MM, Cuadrado C (1999a) The investigation of antinutritional factors in Phaseolus vulgaris. Environmental and varietal differences. Biotechnol Agron Soc Environ 3(4):210–216Google Scholar
  96. Muzquiz M, Burbano C, Pedrosa MM, Ciesiołka D, Pilarski R, Gulewicz K (1999b) Studies on the influence of different nitrogen forms on the chemical composition of various cultivars of Lupinus albus L. Commun Soil Sci Plant Anal 40:2009–2027Google Scholar
  97. Muzquiz M, Burbano C, Cuadrado C, Martin M (2001) Analytical methods for determination of compounds with no nutritive value. In: Jacobsen HJ, Muzquiz M, Hassa A (eds) Handbook on common bean related laboratory methods. Galicia, Spain, pp 11–26Google Scholar
  98. Muzquiz M, Cuadrado C, Guillamón E, Goyoaga C, Altares P, Varela A, Pedrosa MM, Burbano C (2003) Implicación en nutrición y salud de compuestos tóxicos y no-nutritivos de leguminosas. In: de Andalucía Junta (ed) 1as Jornadas de la Asociación Española de Leguminosas. Córdoba, Spain, pp 80–82Google Scholar
  99. Muzquiz M, Burbano C, Pedrosa MM, Ciesiołka D, Pilarski R, Gulewicz K (2009) Studies on the influence of different nitrogen forms on the chemical composition of various cultivars of Lupinus albus L. Com Soil Sci Plant Anal 40:2009–2027Google Scholar
  100. Muzquiz M, Guillamón E, Burbano C, Pascual H, Cabellos B, Cuadrado C, Pedrosa MM (2011) Chemical composition of a new Lupinus species found in Spain, Lupinus mariae-josephi H. Pascual (Fabaceae). Span J Agric Res 9(4):1233–1244Google Scholar
  101. Naveeda K, Jamuna P (2004) Nutritional quality of microwave-cooked and pressure-cooked legumes. Int J Food Sci Nutr 55:441–448Google Scholar
  102. Nishida C, Uauy R, Kumanyika S, Shetty P (2004) The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition 7:245–250PubMedGoogle Scholar
  103. Nishino H, Murakoshi M, Masuda M, Tokuda H, Satomi Y, Onozuka M, Yamaguchi S, Bu P, Tsuruta A, Nosaka K, Baba M, Takasuka N (1999) Suppression of lung and liver carcinogenesis in mice by oral administration of myo-inositol. Anticancer Res 19:3663–3664PubMedGoogle Scholar
  104. Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil-nut allergen in transgenic soybeans. N Engl J Med 14:688–692Google Scholar
  105. Oakenfull DG, Sidhu G (1989) Saponins. In: Cheeke PR (ed) Toxicants of Plant Origin, vol II. Glycosides. CRC Press Inc, Boca Raton, p 131Google Scholar
  106. Pedrosa MM, Cuadrado C, Burbano C, Allaf K, Haddad J, Gelencsér E, Takács K, Guillamón E, Muzquiz M (2012) Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chem 131:862–868. doi:10.1016/j.foodchem.2011.09.061 Google Scholar
  107. Price KR, Johnson IT, Fenwick RG (1987) The chemistry and biological significance of saponins in foods and feedingstuff. CRC Critical Reviews in Food Science and Nutrition 26:27–131PubMedGoogle Scholar
  108. Price KR, Eagles J, Fenwick GR (1988) Saponin composition of 13 varieties of legume seed using fast atom bombardment mass-spectrometry. J Sci Food Agric 42:183–193Google Scholar
  109. Pryme IF, Pustzai A, Bardocz S, Ewen SWB (1998) The induction of gut hyperplasia by phytohaemagglutinin in the diet and limitation of tumour growth. Histol Histopathol 13:575–583PubMedGoogle Scholar
  110. Pusztai A, Grant G, Duguid TJ, Brown DS, Peumans WJ, van Damme EJM, Bardocz S (1995) Inhibition of starch digestion by an α-amylase inhibitor reduces the efficiency of utilisation of dietary proteins and lipids and retards the growth of rats. J Nutr 125:1554–1562PubMedGoogle Scholar
  111. Pusztai A, Grant G, Buchan WC, Bardocz S, de Carvalho ADFU, Ewen SWB (1998) Lipid accumulation in obese Zucker rats is reduced by inclusion of raw kidney bean (Phaseolus vulgaris) in the diet. Br J Nutr 79:213–221PubMedGoogle Scholar
  112. Pusztai A, Bardocz S, Martín-Cabrejas M (2004) The mode of action of ANFs on the gastrointestinal tract and its microflora. In: Muzquiz M, Hill GD, Pedrosa MM, Burbano C (eds) Proceedings of the fourth international workshop on antinutritional factors in legume seeds and oilseeds. EAAP publication No. 110, Wageningen, pp 87–100Google Scholar
  113. Quemener B, Brillouet JM (1983) Ciceritol, a pinitol digalactoside from seeds of chickpea, lentil and white lupin. Phytochemistry 22:1745–1751Google Scholar
  114. Raboy V (2001) Seeds for a better future:”low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462PubMedGoogle Scholar
  115. Rajkó R, Szabó G, Vidal-Valverde C, Kovács E (1997) Designed experiments for reducing antinutritive agents in soybean by microwave energy. J Agric Food Chem 45:3565–3569Google Scholar
  116. Rao PU, Belavady B (1978) Oligosaccharide in pulses: Varietal differences and effects of cooking and germination. J Agric Food Chem 26:316–319Google Scholar
  117. Rao PU, Deosthale YG (1982) Tannin contents of pulses: Varietal differences and effect of cooking and germination. J Sci Food Agric 33:1013–1016Google Scholar
  118. Ravindran V, Tabe LM, Molvig L, Higgins TVJ, Bryden WL (2002) Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius L) with broiler chickens. J Sci Food Agric 82:280–285Google Scholar
  119. Rehman ZU, Shah WH (1998) Effect of microwave and conventional cooking on some nutrients, antinutrient and protein digestibility of chick-peas (Cicer arietinum). Bangladesh Journal of Scientific and Industrial Research 33:200–205Google Scholar
  120. Rehman ZU, Shah WH (2005) Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chem 91:327–331Google Scholar
  121. Reyes-Moreno C, Cuevas-Rodriguez EO, Milan-Carrillo J, Cardenas-Valenzuela OG, Barron-Hoyos J (2004) Solid state fermentation process for producing chickpea (Cicer arietinum L.) tempeh flour. Physicochemical and nutritional characteristics of the product. J Sci Food Agric 84:271–278Google Scholar
  122. Rimbach G, Pallauf J (1997) Cadmium accumulation, zinc status, and mineral bioavailability of growing rats fed diets high in zinc with increasing amounts of phytic acid. Biol Trace Elem Res 57:59–70PubMedGoogle Scholar
  123. Rimbach G, Pallauf J, Walz OP (1996) Effect of microbial phytase on cadmium accumulation in pigs. Archives fur Tierernahrung 49:279–286Google Scholar
  124. Roberts MF, Wink M (1998) Introduction. In: Roberts MF, Wink M (eds) Alkaloids. biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 1–7Google Scholar
  125. Rochfort S, Panozzo J (2007) Phytochemicals for health, the role of pulses. J Agric Food Chem 55:7981–7994PubMedGoogle Scholar
  126. Rubio LA, Pedrosa MM, Cuadrado C, Gelencser E, Clemente A, Burbano C, and Muzquiz, M (2006) Recovery at the terminal ileum of some legume non-nutritional factors in cannulated pigs. J Sci Food Agric 86(6):979–987Google Scholar
  127. Ruiz RG, Price KR, Arthur AE, Rose ME, Rhodes MJ, Fenwick RG (1996a) Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). J Agric Food Chem 44:1526–1530Google Scholar
  128. Ruiz RG, Price K, Rose M, Rhodes M, Fenwick R (1996b) A preliminary study on the effect of germination on saponin content and composition of lentils and chick peas. Zeitschrift fur Lebensmittel- Untersuchung und-Forschung 203(4):366–369PubMedGoogle Scholar
  129. Ruiz RG, Price KR, Fenwick RG, Rhodes MJC (1997) Changes in saponin content and composition of chickpeas and lentils during germination and cooking. In: Bardocz S, Muzquiz M, Pusztai A (eds) Effects of antinutrients on the nutritional value of legume diets. Office for Official Publications of the European Communities, Luxembourg, Proceedings of the Fourth Scientific Workshop, pp 15–18Google Scholar
  130. Rupérez P (1998) Oligosaccharides in raw and processed legumes. Zeitschrift für Lebensmitteluntersuchung und Forschung A 206(2):130–136Google Scholar
  131. Sánchez MC, Altares P, Pedrosa MM, Burbano C, Cuadrado C, Goyoaga C, Muzquiz M, Jimenez-Martinez C, Dávila-Ortiz G (2005) Alkaloid variation during germination in different lupin species. Food Chem 90:347–355Google Scholar
  132. Sandberg AS (2002) Bioavailability of minerals in legumes. Br J Nutr 88(Suppl 3):281–285Google Scholar
  133. Sandberg AS, Andersson H, Carlsson NG, Sandström B (1993) Degradation of soy bean oligosaccharides in the stomach and small intestine of human ileostomy subjects. In: Schlemmer U (ed) Proceedings of the International Conference on Bioavailability 93- Nutritional. Chemical and Food Processing Implications of Nutrient Availability, Karlsruhe, pp 197–201Google Scholar
  134. Saxena AK, Chadha M, Sharma S (2003) Nutrients and antinutrients in chickpea (Cicer arietinum L.) cultivars after soaking and pressure cooking. J Food Sci Technol 40:493–497Google Scholar
  135. Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87(Suppl 2):221–230Google Scholar
  136. Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y (2004) Saponins from edible legumes: chemistry, processing, and health benefits. J Med Food 7:67–78PubMedGoogle Scholar
  137. Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y (2006) Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J 273:948–959PubMedGoogle Scholar
  138. Singh U, Kherdekar MS, Jambunathan R (1982) Studies on desi and kabuli Chickpea (Cicer arietinum L.) cultivars. The levels of amylase inhibitors, levels of oligosaccharides and in vitro starch digestibility. J Food Sci 47:510–512Google Scholar
  139. Sofi F, Cesari F, Abbate R, Gensini GF, Casani A (2008) Adherence to Mediterranean diet and health status: meta-analysis. Br Med J 337:a1344Google Scholar
  140. Srinivasan A, Giri AP, Harsulkar AM, Gatehouse JA, Gupta VS (2005) A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Mol Biol 57:359–374PubMedGoogle Scholar
  141. Steer TE, Gibson GR (2002) The microbiology of phytic acid metabolism by gut bacteria and relevance for bowel cancer. Int J Food Sci Technol 37:783–790Google Scholar
  142. Tava A, Oleszek W, Jurzysta M, Berardo N, Odoardi M (1993) Alfalfa saponins and sapogenins: isolation and quantification in two different cultivars. Phytochem Anal 4:269–274Google Scholar
  143. Thompson LU (1993) Potential health benefits and problems associated with antinutrients in foods. Food Res Int 26:131–149Google Scholar
  144. Trugo LC, Muzquiz M, Pedrosa MM, Ayet G, Burbano C, Cuadrado C, Cavieres E (1999) Influence of malting on selected components of soya bean, black bean, chickpea and barley. Food Chem 65(1):85–90Google Scholar
  145. UNESCO (2010) Fifth Session of the UNESCO’s Intergovernmental committee for the safeguarding of the intangible cultural heritage. Decision 5.COM 6.41 Nairobi, Kenya, 15–19 November 2010 http://www.unesco.org/culture/ich/doc/src/ITH-10-5.COM-CONF.202-Decisions-EN.doc. Cited 28 Feb 2012
  146. Urbano G, López-Jurado M, Aranda P, Vidal-Valverde C, Tenorio EJ, Porres E (2000) The role of phytic acid in legumes: antinutrient or beneficial function? Journal of Physiology and Biochemistry 56:283–294PubMedGoogle Scholar
  147. Urdaneta E, Alberdi J, Aranguren P, Barrenetxe J, Pedrosa MM, Marzo F (2003) Efecto del extrusionado de Lupinus (Lupinus albus L. var. Multolupa) en ratas en crecimiento. In: de Andalucía Junta (ed) 1as Jornadas de la Asociación Española de Leguminosas. Spain, Córdoba, pp 115–116Google Scholar
  148. von Baer E, Vath D (1990) New varieties of Lupin. In: von Baer E (ed) Proceedings of the 6th international Lupin conference. International Lupin Association (ILA), Temuco-Pucon, pp 376–381Google Scholar
  149. Wattenberg LW, Wiedmann TS, Estensen RD, Zimmerman CL, Galbraith AR, Steele VE, Kelloff GJ (2000) Chemoprevention of pulmonary carcinogenesis by brief exposures to aerosolized budesonide or beclomethasone dipropionate and by the combination of aerosolized budesonide and dietary myo-inositol. Carcinogenesis 21:179–182PubMedGoogle Scholar
  150. Welham T, Domoney C (2000) Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159:289–299PubMedGoogle Scholar
  151. Whitaker JR (1988) α-Amylase inhibitors of higher plants and microorganisms. In: Food proteins. Kinsella JE, Soucle WG (eds) Proceedings of the protein. Co-products Symposium, American Oil Chemists’ Society, Champaign II, USA, pp 354–380Google Scholar
  152. WHO (2003) Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series No. 916 World Health Organization: GenevaGoogle Scholar
  153. Wiggins HS (1984) Nutritional value of sugars and related compounds undigested in the small intestine. Proceedings of the Nutrition Society 43:69–75PubMedGoogle Scholar
  154. Woldemichael GM, Montenegro G, Timmermann BN (2003) Triterpenoidal lupin saponins from the Chilean legume Lupinus oreophilus Phil. Phytochemistry 63:853–857PubMedGoogle Scholar
  155. Wood JA, Harden S (2006) A method to estimate the hydration and swelling properties of chickpeas (Cicer arietinum L.). J Food Sci 71:E190–E195Google Scholar
  156. Zdunczyk Z, Juskiewicz J, Frejnagel S, Gulewicz K (1998) Influence of alkaloid and oligosaccharides from white lupin seeds on utilization of diets by rats and absorption of nutrients in the small intestine. J Anim Feed Sci 72:143–154Google Scholar
  157. Zhou JR, Erdman JW (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35:495–508PubMedGoogle Scholar
  158. Zucoloto S, Scaramello AC, Lajolo FM, Muccillo G (1991) Effect of oral phytohemagglutinin intake on cell adaptation in the epithelium of the small intestine of the rat. Int J Exp Pathol 72:41–45PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mercedes Muzquiz
    • 1
  • Alejandro Varela
    • 1
  • Carmen Burbano
    • 1
  • Carmen Cuadrado
    • 1
  • Eva Guillamón
    • 1
  • Mercedes M. Pedrosa
    • 1
  1. 1.Dep. de Tecnología de AlimentosSGIT-INIAMadridSpain

Personalised recommendations