Phytochemistry Reviews

, Volume 10, Issue 1, pp 3–74 | Cite as

The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae

  • Dorothee Langel
  • Dietrich OberEmail author
  • Pieter B. PelserEmail author


Pyrrolizidine alkaloids are characteristic secondary metabolites of the Asteraceae and some other plant families. They are especially numerous and diverse in the tribe Senecioneae and form a powerful defense mechanism against herbivores. Studies into the evolution of pyrrolizidine alkaloid biosynthesis using Senecio species have identified homospermidine synthase as the enzyme responsible for the synthesis of the first specific intermediate. These studies further indicated that the homospermidine synthase-encoding gene was recruited following gene duplication of deoxyhypusine synthase and that this occurred independently in several different angiosperm lineages. A review of published pyrrolizidine alkaloid data shows that the Senecioneae are characterized by a large qualitative and quantitative variation in pyrrolizidine alkaloid profiles and that these data demonstrate little phylogenetic signal. This suggests that although the first steps of this pathway are highly conserved, the diversification of secondarily derived pyrrolizidine alkaloids is extremely plastic.


Chemotaxonomy Deoxyhypusine synthase Homospermidine synthase Secondary metabolism Structure diversification 



Complementary DNA


Deoxyhypusine synthase

E. coli

Escherichia coli


Eukaryotic initiation factor 5A


Homospermidine synthase




Pyrrolizidine alkaloid(s)





Parts of the work were supported by the Deutsche Forschungsgemeinschaft (DFG) in grants to D. Ober.


  1. Abdelhady MIS, Beuerle T, Ober D (2009) Homospermidine in transgenic tobacco results in considerably reduced spermidine levels but is not converted to pyrrolizidine alkaloid precursors. Plant Mol Biol 71:145–155PubMedGoogle Scholar
  2. Adams R, Gianturco M (1956) Senecio alkaloids: the alkaloids of Senecio brasiliensis, fremonti and ambrosioides. J Am Chem Soc 78:5315–5317Google Scholar
  3. Adams R, Gianturco M (1957) Senecio alkaloids: spartioidine, the alkaloid from Senecio spartioides; stereochemical relationship to other Senecio alkaloids. J Am Chem Soc 79:174–177Google Scholar
  4. Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci USA 105:10057–10060PubMedGoogle Scholar
  5. Agrawal AA, Salminen J-P, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673PubMedGoogle Scholar
  6. Ahmad W, Ahmad Z, Najamul-Hussain Kazmi S et al (1994) Pyrrolizidine-alkaloid content of the genus Senecio. J Chem Soc Pak 16:64–81Google Scholar
  7. Anke S, Niemüller D, Moll S et al (2004) Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol 136:4037–4047PubMedGoogle Scholar
  8. Anke S, Gonde D, Kaltenegger E et al (2008) Pyrrolizidine alkaloid biosynthesis in Phalaenopsis orchids: developmental expression of alkaloid-specific homospermidine synthase in root tips and young flower buds. Plant Physiol 148:751–760PubMedGoogle Scholar
  9. Arciniegas A, Pérez Castorena AL, Villaseñor JL et al (2005) Chemical constituents of Senecio procumbens. J Mex Chem Soc 49:284–286Google Scholar
  10. Asada Y, Furuya T (1982) Neosenkirkine and senkirkine from Senecio pierotii. Planta Med 44:182PubMedGoogle Scholar
  11. Asada Y, Furuya T, Shiro M et al (1982) Senecicannabine, a new pyrrolizidine alkaloid from Senecio cannabinifolius. Tetrahedron Lett 23:189–192Google Scholar
  12. Asibal CF, Zalkow LH, Gelbaum LT (1991) Acetylanonamine, a new secopyrrolizidine alkaloid from Senecio anonymus. J Nat Prod 54:1425–1426PubMedGoogle Scholar
  13. Asres K, Sporer F, Wink M (2008) Occurrence of pyrrolizidine alkaloids in three Ethiopian Solanecio species. Biochem Syst Ecol 36:399–407Google Scholar
  14. Bah M, Bye R, Pereda-Miranda R (1994) Hepatotoxic pyrrolizidine alkaloids in the Mexican medicinal plant Packera candidissima (Asteraceae; Senecioneae). J Ethnopharmacol 43:19–30PubMedGoogle Scholar
  15. Bai YL, Benn M, Majak W (1996) Pyrrolizidine alkaloids of three species of Senecio in British Columbia. Planta Med 62:71–72PubMedGoogle Scholar
  16. Bai Y, Benn M, Duke N et al (2006) The alkaloids of Brachyglottis hectori. ARKIVOC III:34–42Google Scholar
  17. Barrero AF, Alvarez-Manzaneda Roldan EJ, Alvarez-Manzaneda Roldan R (1991) Pyrrolizidine alkaloids from Senecio nebrodensis L. Annales de Quimica 87:386–390Google Scholar
  18. Benn M, Gul W (2007) Pyrrolizidine alkaloids in the antipodean genus Brachyglottis (Asteraceae). Biochem Syst Ecol 35:676–681Google Scholar
  19. Benn M, Were O (1992) Ruwenine and ruzorine: pyrrolizidine alkaloids of Senecio ruwenzoriensis. Phytochemistry 31:3295–3296Google Scholar
  20. Benn MH, Mathenge S, Munavu RM et al (1995) The principal alkaloid of Senecio schweinfurthii. Phytochemistry 40:1327–1329Google Scholar
  21. Bicchi C, Caniato R, Tabacchi R et al (1989) Capillary gas chromatography/positive and negative ion chemical ionization mass spectrometry on pyrrolizidine alkaloids of Senecio inaequidens using ammonia and hydroxyl ions as the reagent species. J Nat Prod 52:32–41Google Scholar
  22. Bicchi C, Rubiolo P, Frattini C et al (1991) Off-line supercritical fluid extraction and capillary gas chromatography of pyrrolizidine alkaloids in Senecio species. J Nat Prod 54:941–945Google Scholar
  23. Bohlmann F, Zdero C, Bergert D et al (1979) Neue Furanoeremophilane und weitere Inhaltsstoffe aus südafrikanischen Senecio-Arten. Phytochemistry 18:79–93Google Scholar
  24. Bohlmann F, Gupta RK, Jakupovic J (1981) An acylpyrrole derivative and further constituents from Jamaican representatives of the tribe Senecioneae. Phytochemistry 20:831–832Google Scholar
  25. Bohlmann F, Zdero C, Jakupovic J et al (1986) Further pyrrolizidine alkaloids and furoeremophilanes from Senecio species. Phytochemistry 25:1151–1159Google Scholar
  26. Boppré M, Colegate SM, Edgar JA et al (2008) Hepatotoxic pyrrolizidine alkaloids in pollen and drying-related implications for commercial processing of bee pollen. J Agric Food Chem 56:5662–5672PubMedGoogle Scholar
  27. Böttcher F, Adolph RD, Hartmann T (1993) Homospermidine synthase, the first pathway-specific enzyme in pyrrolizidine alkaloid biosynthesis. Phytochemistry 32:679–689Google Scholar
  28. Böttcher F, Ober D, Hartmann T (1994) Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 72:80–85Google Scholar
  29. Bourauel T, Plassmeier C, Roeder E (1998) Pyrrolizidine alkaloids from Senecio nevadensis. J Nat Toxins 7:87–93PubMedGoogle Scholar
  30. Bredenkamp MW, Wiechers A, van Rooyen PH (1985) A new pyrrolizidine alkaloid from Senecio latifolius DC. Tetrahedron Lett 26:929–932Google Scholar
  31. Bridgham JT, Brown JE, Rodriguez-Mari A et al. (2008) Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 4 doi  10.1371/s1000191
  32. Briggs LH, Crambie RC, Candy BJ et al (1965) Alkaloids of New Zealand Senecio species: part II. senkirkine. J Chem Soc 65:2492–2498PubMedGoogle Scholar
  33. Cava MP, Rao KV, Weisbach JA et al (1968) Alkaloids of Cacalia floridana. J Org Chem 33:3570–3573Google Scholar
  34. Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals 6:105–109PubMedGoogle Scholar
  35. Cheng D-L, Niu J-K, Roeder E (1992) Pyrrolizidine alkaloids from Senecio kaschkarovii. Phytochemistry 31:3671–3672Google Scholar
  36. Chizzola R, Ozelsberger B, Langer T (2000) Variability in chemical constituents in Petasites hybridus from Austria. Biochem Syst Ecol 28:421–432PubMedGoogle Scholar
  37. Chou MW, Fu PP (2006) Formation of DHP-derived DNA adducts in vivo from dietary supplements and Chinese herbal plant extracts containing carcinogenic pyrrolizidine alkaloids. Toxicol Ind Health 22:321–327PubMedGoogle Scholar
  38. Christov V, Evstatieva L (2003) Alkaloid profile of Bulgarian species from genus Senecio L. Z Naturforsch C: Biosci 58c:300–302Google Scholar
  39. Christov V, Mikhova B, Alexandrova R et al (2002a) Alkaloids from the roots of Senecio macedonicus Griseb. Z Naturforsch C: Biosci 57:780–784Google Scholar
  40. Christov VS, Mikhova BP, Evstatieva LN (2002b) Alkaloids from Senecio aquaticus. Fitoterapia 73:171–173PubMedGoogle Scholar
  41. Christov V, Kostova N, Evstatieva L (2005) 6α-Angeloylplatynecine: a new alkaloid from Senecio nemorensis subsp. fuchsii (C. C. Gmelin) Celak. Nat Prod Res 19:389–392PubMedGoogle Scholar
  42. Cooper RA, Bowers RJ, Beckham CJ et al (1996) Preparative separation of pyrrolizidine alkaloids by high-speed counter-current chromatography. J Chromatogr A 732:43–50Google Scholar
  43. Coucourakis ED, Gordon-Gray CG (1970) The Senecio alkaloids. Suggested structures for isoline and bisline, two new alkaloids from Senecio othonniformis Fourcade. J Chem Soc C: Org: 2312–2315Google Scholar
  44. Culvenor CCJ (1978) Pyrrolizidine alkaloids—occurrence and systematic importance in angiosperms. Botaniska Notiser 131:473–486Google Scholar
  45. Culvenor CCJ, Geissman TA (1961) The alkaloids of Senecio mikanioides Otto. Sarracine and sarracine N-oxide. J Org Chem 26:3045–3050Google Scholar
  46. Culvenor CCJ, Smith LW (1955) The alkaloids of Erechtites quadridentata DC. Aust J Chem 8:556–561Google Scholar
  47. Culvenor CCJ, Edgar JA, Smith LW et al (1976) The occurence of senkirkine in Tussilago farfara. Austr J Chem 29:229–230Google Scholar
  48. DaSilva CdM, Bolzan AA, Heinzmann BM (2006) Alcalóides pirrolizidínicos em espécies do gênero Senecio. Quim Nova 29:1047–1053Google Scholar
  49. DePristo MA (2007) The subtle benefits of being promiscuous: adaptive evolution potentiated by enzyme promiscuity. HFSP J 1:94–98PubMedGoogle Scholar
  50. Dominguez DM, Reina M, Santos-Guerra A et al (2008) Pyrrolizidine alkaloids from Canarian endemic plants and their biological effects. Biochem Syst Ecol 36:153–166Google Scholar
  51. Ehmke A, von Borstel K, Hartmann T (1987) Specific uptake of the N-oxides of pyrrolizidine alkaloids by cells, protoplasts, and vacuoles from Senecio cell cultures. In: Marin BP (ed) Plant vacuoles. Plenum Press, New York, pp 301–304Google Scholar
  52. Ehmke A, von Borstel K, Hartmann T (1988) Alkaloid N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris L. Planta 176:83–90Google Scholar
  53. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608Google Scholar
  54. Eich E (2007) Solanaceae and convolulaceae: secondary metabolites, biosynthesis, chemotaxonomy, biological and economic significance—a handbook. Springer, BerlinGoogle Scholar
  55. El-Shazly A (2002) Pyrrolizidine alkaloid profiles of some Senecio species from Egypt. Z Naturforsch C: Biosci 57c:429–433Google Scholar
  56. Fang Z, Chang-hong W, Wan W et al (2008) Quantitative analysis by HPLC-MS of the pyrrolizidine alkaloid adonifoline in Senecio scandens. Phytochem Anal 19:25–31Google Scholar
  57. Freer AA, Kelly HA, Robins DJ (1986) Rosmarinine: a pyrrolizidine alkaloid. Acta Crystallogr C 42:1348–1350Google Scholar
  58. Fröhlich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1, 2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochem 67:1493–1502Google Scholar
  59. Fu PP, Xia Q, Lin G et al (2004) Pyrrolizidine alkaloids—genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36:1–55PubMedGoogle Scholar
  60. Gardner DR, Thorne MS, Molyneux RJ et al (2006) Pyrrolizidine alkaloids in Senecio madagascariensis from Australia and Hawaii and assessment of possible livestock poisoning. Biochem Syst Ecol 34:736–744Google Scholar
  61. Gharbo SA, Habib AAM (1969) Phytochemical investigation of Egyptian Senecio. Part 2. Alkaloids of Senecio aegyptius, S. desfontainei, S. vulgaris, S. petasitis and S. mikanioides. Lloydia 32:503–508PubMedGoogle Scholar
  62. Glinski JA, Asibal CF, Van Derveer D et al (1988) Anonamine, C19H27NO7, neosenkirkine, C19H27NO6, and hydroxysenkirkine, C19H27NO7.CH3OH. Macrocyclic secopyrrolizidine alkaloids from Senecio anonymus Wood. Acta Crystallogr C 44:1593–1598PubMedGoogle Scholar
  63. González AG, De la Fuente MG, Reina M (1973) Alcaloides de la pirrolizidina I. Alcaloides del Senecio petasites D.C. (Compuesta). Anales de Quimica 69:1343–1345Google Scholar
  64. Gordon-Gray CG (1967) Senecio alkaloids. 19. Isolation of chlorodeoxysceleratine. J Chem Soc C: Org: 781–782Google Scholar
  65. Gordon-Gray CG, Wells RB (1974) Senecio alkaloids—structure and absolute-configuration of swazine. J Chem Soc Perkin Trans I:1556–1561Google Scholar
  66. Grotewold E (2005) Plant metabolic diversity: a regulatory perspective. Trends Plant Sci 10:57–62PubMedGoogle Scholar
  67. Grue MR, Liddell JR (1993) Pyrrolizidine alkaloids from Senecio chrysocoma. Phytochemistry 33:1517–1519Google Scholar
  68. Habermehl GG, Martz W, Tokarnia CH et al (1988) Livestock poisoning in South America by species of the Senecio plant. Toxicon 26:275–286PubMedGoogle Scholar
  69. Habib A-AM (1981) Alkaloids from Senecio aegyptius and S. desfontainei. Planta Med 43:290–292PubMedGoogle Scholar
  70. Hartmann T (1985) Prinzipien des pflanzlichen Sekundärstoffwechsels. Plant Syst Evol 150:15–34Google Scholar
  71. Hartmann T (2004) Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219:1–4PubMedGoogle Scholar
  72. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846PubMedGoogle Scholar
  73. Hartmann T, Dierich B (1998) Chemical diversity and variation of pyrrolizidine alkaloids of the senecionine type: biological need or coincidence? Planta 206:443–451Google Scholar
  74. Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. In: Leeper FJ, Vederas JC (eds) Topics in current chemistry. Springer, Berlin, pp 207–244Google Scholar
  75. Hartmann T, Ober D (2008) Defense by pyrrolizidine alkaloids: developed by plants and recruited by insects. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 213–231Google Scholar
  76. Hartmann T, Toppel G (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26:1639–1643Google Scholar
  77. Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon Press, Oxford, pp 155–233Google Scholar
  78. Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80Google Scholar
  79. Hartmann T, Sander H, Adolph RD et al (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 175:82–90Google Scholar
  80. Hartmann T, Ehmke A, Eilert U et al (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L. Planta 177:98–107Google Scholar
  81. Hartmann T, Witte L, Ehmke A et al (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry 45:489–497Google Scholar
  82. Hartmann T, Theuring C, Beuerle T et al (2004) Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous Arctiids and the alkaloid profiles of their larval food-plants. J Chem Ecol 30:229–254PubMedGoogle Scholar
  83. Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199PubMedGoogle Scholar
  84. Heinrich M, Robles M, West JE et al (1998) Ethnopharmacology of Mexican Asteraceae (Compositae). Annu Rev Pharmacol Toxicol 38:539–565PubMedGoogle Scholar
  85. Hirono I, Mori H, Yamada K et al (1977) Carcinogenic activity of petasitenine, a new alkaloid from Petasites japonicus Maxim. J Natl Cancer Inst 58:1155–1156PubMedGoogle Scholar
  86. Hirschmann GS, Jakupovic J (1988) Pyrrolizidine alkaloids from Senecio deferens. Planta Med 54:360PubMedGoogle Scholar
  87. Hol WHG, Van Veen JA (2002) Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. J Chem Ecol 28:1763–1772PubMedGoogle Scholar
  88. Hösch G, Wiedenfeld H, Dingermann T et al (1996) A new high performance liquid chromatography method for the simultaneous quantitative analysis of pyrrolizidine alkaloids and their N-oxides in plant material. Phytochem Anal 7:284–288Google Scholar
  89. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci 256:119–124Google Scholar
  90. Ingolfsdóttir K, Hylands PJ (1990) Pyrrolizidine alkaloids in Senecio vulgaris L. growing in Iceland. Acta Pharm Nord 2:343–348PubMedGoogle Scholar
  91. Ji L, Chen Y, Liu T et al (2008) Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes. Toxicol Appl Pharmacol 231:393–400PubMedGoogle Scholar
  92. Jones CG, Firn RD (1991) On the evolution of plant secondary chemical diversity. Phil Trans R Soc London Ser B 333:273–280Google Scholar
  93. Kapadia GJ, Ramdass A, Bada F (1990) Pyrrolizidine alkaloids of Senecio glabellus. Pharm Biol 28:67–71Google Scholar
  94. Klásek A, Reichstein T, Šantavy F (1968) Die Pyrrolizidin-Alkaloide aus Senecio alpinus (L.) Scop., S. subalpinus Koch und S. incanus L. subsp. carniolicus (Willd.) Br.-Bl. Pyrrolizidin-Alkaloide, 13. Mitteilung. Helv Chim Acta 51:1088–1095PubMedGoogle Scholar
  95. Kostova N, Christov V, Cholakova M et al (2006) Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio. J Serb Chem Soc 71:1275–1280Google Scholar
  96. Koulmann A, Seeliger C, Edwards PJB et al (2008) E/Z-Thesinine-O-4′-α-rhamnoside, pyrrolizidine conjugates produced by grasses (Poaceae). Phytochemistry 69:1927–1932Google Scholar
  97. Krebs HC, Carl T, Habermehl GG (1996) Pyrrolizidine alkaloid composition in six brazilian Senecio species. Phytochemistry 43:1227–1229Google Scholar
  98. Kunec EK, Robins DJ (1986) Evidence for different 1-hydroxymethylpyrrolizidines as intermediates in the biosynthesis of retronecine and rosmarinecine. J Chem Soc Chem Commun 250–252Google Scholar
  99. Laing M, Sommerville P (1972) Crystal and molecular structure of methiodide of swazine, an alkaloid from Senecio swaziensis Compton. Tetrahedron Lett 51:5183–5186Google Scholar
  100. Leonard NJ (1959) Senecio alkaloids. In: Manske RHF, Holmes HL (Eds) The alkaloids. Elsevier pp. 108–166Google Scholar
  101. Li S-L, Lin G, Fu PP et al (2008) Identification of five hepatotoxic pyrrolizidine alkaloids in a commonly used traditional Chinese medicinal herb, Herba Senecionis scandentis (Qianliguang). Rapid Commun Mass Spectrom 22:591–602PubMedGoogle Scholar
  102. Liddell JR (1999) Pyrrolizidine alkaloids. Nat Prod Rep 16:499–507Google Scholar
  103. Liddell JR, Logie CG (1993a) 7-Angelyl-1-methylenepyrrolizidines from Senecio chrysocoma. Phytochemistry 34:1198–1199Google Scholar
  104. Liddell JR, Logie CG (1993b) A re-investigation of the alkaloids of Senecio pterophorus. Phytochemistry 34:1629–1631Google Scholar
  105. Liddell JR, Stermitz FR (1994) Pyrrolizidine alkaloids from Trollius laxus. In: Colegate SM, Dorling PR (eds) Plant-assoc. Toxins: agricultural, phytochemical, and ecological aspects Proc Int Symp Poisonous Plants (ISOPP4, 1993). CAB International, Wallingford, pp 217–220Google Scholar
  106. Lin W-Y, Teng C-M, Tsai I-L et al (2000) Anti-platelet aggregation constituents from Gynura elliptica. Phytochemistry 53:833–836PubMedGoogle Scholar
  107. Liu K, Roeder E (1991) Pyrrolizidine alkaloids from Senecio argunensis. Phytochemistry 30:1303–1305Google Scholar
  108. Lock Sing OR (2006) Diversidad química el género Werneria. Rev Soc Quím Perú 72:32–48Google Scholar
  109. Luethy J, Zweifel U, Schlattter C et al (1980) Pyrrolizidine alkaloids in coltsfoot (Tussilago farfara) of various sources. Mitteilungen Geb Lebensm 71:73–80Google Scholar
  110. Luethy J, Zweifel U, Karlhuber B et al (1981) Pyrrolizidine alkaloids of Senecio alpinus L. and their detection in feedingstuffs. J Agric Food Chem 29:302–305Google Scholar
  111. Luethy J, Zweifel U, Schlatter C (1983) Pyrrolizidin-alkaloide in Petasites hybridus L. und P. albus L. Pharm Acta Helv 58:98–100Google Scholar
  112. Macel M, Vrieling K, Klinkhamer PG (2004) Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 65:865–873PubMedGoogle Scholar
  113. Macel M, Bruinsma M, Dijkstra SM et al (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508PubMedGoogle Scholar
  114. Mackay MF, Mitrprachachon P, Culvenor CCJ (1985) Hygrophylline, C18H27NO6: a pyrrolizidine alkaloid. Acta Crystallogr C 41:395–397Google Scholar
  115. Maldonado R JI, Arciniegas A, Pérez-Castorena A-L et al (2008) Furanoeremophilanes and other constituents of Pittocaulon bombycophole. Heterocycles 75:3035–3042Google Scholar
  116. Mandic BM, Godevac DN, Beškoski VP et al (2009) Pyrrolizidine alkaloids from seven wild-growing Senecio species in Serbia and Montenegro. J Serb Chem Soc 74:27–34Google Scholar
  117. Manske RHF (1944) The alkaloids. Annu Rev Biochem 13:533–548Google Scholar
  118. Marín-Loaiza JC, Céspedes C, Beuerle T et al (2007) Ceroplastes albolineatus, the first scale insect shown to sequester pyrrolizidine alkaloids from its host-plant Pittocaulon praecox. Chemoecology 17:109–115Google Scholar
  119. Marín-Loaiza JC, Ernst L, Beuerle T et al (2008) Pyrrolizidine alkaloids of the endemic Mexican genus Pittocaulon and assignment of stereoisomeric 1, 2-saturated necine bases. Phytochemistry 69:154–167PubMedGoogle Scholar
  120. Mattocks AR (1968) Toxicity of pyrrolizidine alkaloids. Nature 217:723–728PubMedGoogle Scholar
  121. Mattocks AR (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, LondonGoogle Scholar
  122. Mattocks AR, Driver E (1987) Toxic actions of senaetnine, a new pyrrolizidine-type alkaloid, in rats. Toxicol Lett 38:315–319PubMedGoogle Scholar
  123. McGaw LJ, Steenkamp V, Eloff JN (2007) Evaluation of Athrixia bush tea for cytotoxicity, antioxidant activity, caffeine content and presence of pyrrolizidine alkaloids. J Ethnopharmacol 110:16–22PubMedGoogle Scholar
  124. Moll S, Anke S, Kahmann U et al (2002) Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase. Plant Physiol 130:47–57PubMedGoogle Scholar
  125. Molyneux RJ, Johnson AE, Roitman JN et al (1979) Chemistry of toxic range plants. Determination of pyrrolizidine alkaloid content and composition in Senecio species by nuclear magnetic resonance spectroscopy. J Agric Food Chem 27:494–499PubMedGoogle Scholar
  126. Mroczek T, Glowniak K (2002) Pyrrolizidine alkaloids. Their chemistry, occurence and significance as natural compounds. In: Rauter AP, Palma FB, Justino J, Araújo ME, Dos Santos SP (eds) Natural products in the new millenium: propspects and industrial application. Kluwer, Dordrecht, pp 1–46Google Scholar
  127. Mroczek T, Glowniak K, Wlaszczyk A (2002) Simultaneous determination of N-oxides and free bases of pyrrolizidine alkaloids by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J Chromatogr A 949:249–262PubMedGoogle Scholar
  128. Mroczek T, Ndjoko K, Glowniak K et al (2004) On-line structure characterization of pyrrolizidine alkaloids in Onosma stellulatum and Emilia coccinea by liquid chromatography-ion-trap mass spectrometry. J Chromatogr A 1056:91–97PubMedGoogle Scholar
  129. Nawaz HR, Malik A, Muhammad P et al (2000) Chemical constituents of Ajuga parviflora. Z Naturforsch 55b:100–103Google Scholar
  130. Ndjoko K, Wolfender J-L, Roeder E et al (1999) Determination of pyrrolizidine alkaloids in Senecio species by liquid chromatography/thermospray-mass spectrometry and liquid chromatography/nuclear magnetic resonance spectroscopy. Planta Med 65:562–566PubMedGoogle Scholar
  131. Niwa H, Ishiwata H, Kuroda A et al (1983) Farfugine, a new pyrrolizidine alkaloid isolated from Farfugium japonicum Kitam. Chem Lett 12:789–790Google Scholar
  132. Niwa H, Ishiwata H, Yamada K (1985) Isolation of petasitenine, a carcinogenic pyrrolizidine alkaloid from Farfugium japonicum. J Nat Prod 48:1003–1004Google Scholar
  133. Noorwala M, Mohammad FV, Ahmad VU et al (2000) Pyrrolizidine alkaloids from Senecio lorenthii. Fitoterapia 71:618–620PubMedGoogle Scholar
  134. Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449PubMedGoogle Scholar
  135. Ober D (2010) Gene duplications and the time thereafter—examples from plant secondary metabolism. Plant Biol (in press)Google Scholar
  136. Ober D, Hartmann T (1999a) Deoxyhypusine synthase from tobacco: cDNA isolation, characterization, and bacterial expression of an enzyme with extended substrate specificity. J Biol Chem 274:32040–32047PubMedGoogle Scholar
  137. Ober D, Hartmann T (1999b) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782PubMedGoogle Scholar
  138. Ober D, Hartmann T (2000) Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. Plant Mol Biol 44:445–450PubMedGoogle Scholar
  139. Ober D, Kaltenegger E (2009) Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant secondary metabolism. Phytochemistry 70:1687–1695PubMedGoogle Scholar
  140. Ober D, Harms R, Witte L et al (2003) Molecular evolution by change of function: alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12812PubMedGoogle Scholar
  141. Paiva JA, Barata LES, Trigo JR (2004) Pyrrolizidine alkaloids in three Senecio species from southern Brazil. Biochem Syst Ecol 32:1219–1222Google Scholar
  142. Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6:115–123PubMedGoogle Scholar
  143. Pelser PB, van den Hof K, Gravendeel B et al (2004) The systematic value of morphological characters in Senecio sect. Jacobaea (Asteraceae) as compared to DNA sequences. Syst Bot 29:790–805Google Scholar
  144. Pelser PB, de Vos H, Theuring C et al (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295PubMedGoogle Scholar
  145. Pelser PB, Nordenstam B, Kadereit JW et al (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104Google Scholar
  146. Pelser PB, Kennedy AH, Tepe EJ et al (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Am J Bot 97:856–873Google Scholar
  147. Perez-Castorena A-L, Arciniegas A, Alonso RP et al (1998) Callosine, a 3-alkyl-substituted pyrrolizidine alkaloid from Senecio callosus. J Nat Prod 61:1288–1291PubMedGoogle Scholar
  148. Pérez-Castorena A-L, Arciniegas A, Castro A et al (1997) Pyrrolizidine alkaloids from Senecio roseus and Senecio helodes. J Nat Prod 60:1322–1325Google Scholar
  149. Pérez-Castorena A-L, Arciniegas A, Perez R et al (1999a) Iodanthine, a pyrrolizidine alkaloid from Senecio iodanthus and Senecio bracteatuss. J Nat Prod 62:1039–1043Google Scholar
  150. Pérez-Castorena A-L, Arciniegas A, Villaseñor JL et al (1999b) Alkaloids from three Senecio species. Biochem Syst Ecol 27:835–837Google Scholar
  151. Pérez-Castorena A-L, Arciniegas A, Martinez F et al (2000) Pyrrolizidine alkaloids from four Senecio species. Biochem Syst Ecol 28:279–282Google Scholar
  152. Pestchanker MJ, Ascheri MS, Giordano OS (1985) Uspallatine, a pyrrolizidine alkaloid from Senecio uspallatensis. Phytochemistry 24:1622–1624Google Scholar
  153. Pieters LA, Vlietinck AJ (1988) Spartioidine and usaramine, two pyrrolizidine alkaloids from Senecio vulgaris. Planta Med 54:178–179PubMedGoogle Scholar
  154. Qi X, Wu B, Cheng Y et al (2009) Simultaneous characterization of pyrrolizidine alkaloids and N-oxides in Gynura segetum by liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 23:291–302PubMedGoogle Scholar
  155. Ray AC, Williams HJ, Reagor JC (1987) Pyrrolizidine alkaloids from Senecio longilobus and Senecio glabellus. Phytochemistry 26:2431–2433Google Scholar
  156. Reimann A, Nurhayati N, Backenköhler A et al (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:2772–2784PubMedGoogle Scholar
  157. Reina M, Gonzalez-Coloma A, Gutierrez C et al (2000) Defensive chemistry of Senecio miser. J Nat Prod 64:6–11Google Scholar
  158. Rizk A-FM (1990) The pyrrolizidine alkaloids: plant sources and properties. In: Rizk A-FM (ed) Naturally occuring pyrrolizidine alkaloids. CRC Press, Boca Raton, pp 1–89Google Scholar
  159. Robins DJ (1982) The pyrrolizidine alkaloids. Prog Chem Org Nat Prod 41:115–202Google Scholar
  160. Robins DJ (1994) Pyrrolizidine alkaloids. Nat Prod Rep 11:613–619PubMedGoogle Scholar
  161. Roeder E (1995) Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50:83–98PubMedGoogle Scholar
  162. Roeder E (2000) Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55:711–726PubMedGoogle Scholar
  163. Roeder E, Abdel-Ghani A (1990) Pyrrolizidine alkaloids from Petasites paradoxus (Retz.) Baumg. Sci Pharm 58:403–407Google Scholar
  164. Roeder E, Liu K (1991) Pyrrolizidine alkaloids from Senecio integrifolius var. fauriri. Phytochemistry 30:1734–1737Google Scholar
  165. Roeder E, Wiedenfeld H (1977) Isolierung und Strukturaufklärung des Alkaloids Fuchsisenecionin aus Senecio fuchsii. Phytochemistry 16:1462–1463Google Scholar
  166. Roeder E, Wiedenfeld H, Pastewka U (1979) Pyrrolizidinalkaloide aus Senecio vernalis. Planta Med 37:131–136Google Scholar
  167. Roeder E, Wiedenfeld H, Frisse M (1980a) Pyrrolizidinalkaloide aus Senecio doronicum. Phytochemistry 19:1275–1277Google Scholar
  168. Roeder E, Wiedenfeld H, Stengl P (1980b) Das Pyrrolizidinalkaloid O7-Angelylheliotridin aus Senecio ovirensis. Planta Med Suppl 182–184Google Scholar
  169. Roeder E, Wiedenfeld H, Stengl P (1981) Die Pyrrolizidinalkaloide Senecionin und Retrorsin aus Senecio inaequidens. Planta Med 39:412–413Google Scholar
  170. Roeder E, Wiedenfeld H, Hoening A (1983) Pyrrolizidinealkaloide aus Senecio aureus. Planta Med 49:57–59Google Scholar
  171. Roeder E, Wiedenfeld H, Britz-Kirstgen R (1984a) Pyrrolizidine alkaloids from Senecio cacaliaster. Phytochemistry 23:1761–1763Google Scholar
  172. Roeder E, Wiedenfeld H, Knözinger-Fischer P (1984b) Pyrrolizidinalkaloide aus Senecio abrotanifolius, ssp. abrotanifolius und ssp. abrotanifolius var. tiroliensis. Planta Med 2:203–204Google Scholar
  173. Roeder E, Hille T, Wiedenfeld H (1986) Pyrrolizidin-alkaloide von Senecio sylvaticus L. Sci Pharm 54:347–350Google Scholar
  174. Roeder E, Wiedenfeld H, Pfitzer A (1988) Doriasenine, a pyrrolizidine alkaloid from Senecio doria. Phytochemistry 27:4000–4001Google Scholar
  175. Roeder E, Wiedenfeld H, Kersten R (1990) The pyrrolizidine alkaloids of Senecio aquaticus Huds. Sci Pharm 58:1–8Google Scholar
  176. Roeder E, Bourauel T, Theisen I (1992) Pyrrolizidine alkaloids from Werneria nubigena. Nat Toxins 1:81–83PubMedGoogle Scholar
  177. Roeder E, Bourauel T, Kersten R (1993a) Pyrrolizidine alkaloids from Senecio persoonii. Phytochemistry 32:1051–1053Google Scholar
  178. Roeder E, Eckert A, Bourauel T (1993b) Pyrrolizidine alkaloids from Petasites spurius. Pharmazie 48:953–954Google Scholar
  179. Roitman JN (1983) The pyrrolizidine alkaloids of Senecio triangularis. Aust J Chem 36:1203–1213Google Scholar
  180. Romo de Vivar A, Pérez A-L, Arciniegas A et al (1995) Pyrrolizidine alkaloids from Senecio mulgediifolius, two new 13-membered macrocyclic 7, 9-diesters. Tetrahedron Lett 51:12521–12528Google Scholar
  181. Romo de Vivar A, Peréz A-L, Vidales P et al (1996) Pyrrolizidine alkaloids from Senecio jacalensis and Senecio callosus. Biochem Syst Ecol 24:175–176Google Scholar
  182. Romo de Vivar A, Perez-Castorena A-L, Arciniegas A et al (2007) Secondary metabolites from Mexican species of the tribe Senecioneae (Asteraceae). J Mex Chem Soc 51:160–172Google Scholar
  183. Rose EF (1972) Senecio species: toxic plants used as food and medicine in the Transkei. S Afr Med J 46:1039–1043PubMedGoogle Scholar
  184. Roth C, Rastogi S, Arvestad L et al (2007) Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zool B Mol Dev Evol 308:58–73PubMedGoogle Scholar
  185. Rüeger H, Benn MH (1983) The alkaloids of Senecio triangularis Hook. Can J Chem 61:2526–2529Google Scholar
  186. Sander H, Hartmann T (1989) Site of synthesis, metabolism and translocation of senecionine N-oxide in cultured roots of Senecio erucifolius. Plant Cell Tissue Organ Cult 18:19–32Google Scholar
  187. Schaneberg BT, Molyneux RJ, Khan IA (2004) Evaporative light scattering detection of pyrrolizidine alkaloids. Phytochem Anal 15:36–39PubMedGoogle Scholar
  188. Schmid P, Luethy J, Zweifel U et al (1987) GC/MS characterization of pyrrolizidine alkaloids in some species of Asteraceae. Mitt Lebensm Hyg 78:208–216Google Scholar
  189. Smith LW, Culvenor CCJ (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod 44:129–152PubMedGoogle Scholar
  190. Stelljes ME, Kelley RB, Molyneux RJ et al (1991) GC-MS determination of pyrrolizidine alkaloids in four Senecio species. J Nat Prod 54:759–773Google Scholar
  191. Stirling IR, Freer IKA, Robins DJ (1997) Pyrrolizidine alkaloid biosynthesis. Incorporation of 2-aminobutanoic acid labelled with 13C or 2H into the senecic acid portion of rosmarinine and senecionine. J Chem Soc Perkin Trans I 1:677–689Google Scholar
  192. Suau R, Cabezudo B, Rico R et al (2002) Pyrrolizidine alkaloids from three Spanish Senecio species. Biochem Syst Ecol 30:981–984Google Scholar
  193. Susag L, Parvez M, Mathenge S et al (2000) Structure revision of isoline (ruwenine), bisline and isolinecic acid. Phytochemistry 54:933–935PubMedGoogle Scholar
  194. Tan A, Wang Z, He H et al (2003) New pyrrolizidine alkaloids from Ligularia tsangchanensis. Heterocycles 60:1195–1198Google Scholar
  195. Tang J, Akao T, Nakamura N et al (2007) In vitro metabolism of isoline, a pyrrolizidine alkaloid from Ligularia duciformis, by rodent liver microsomal esterase and enhanced hepatotoxicity by esterase inhibitors. Drug Metab Dispos 35:1832–1839PubMedGoogle Scholar
  196. TheArabidopsisGenome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  197. Thu Huong DT, Martin M-T, Litaudon M et al (1998) Pyrrolizidine alkaloids from Amphorogyne spicata. J Nat Prod 61:1444–1446PubMedGoogle Scholar
  198. Toppel G, Witte L, Riebesehl B et al (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producing Senecio species. Plant Cell Rep 6:466–469Google Scholar
  199. Trigo JR, Leal IR, Matzenbacher NI et al (2003) Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae: Asteraceae). Biochem Syst Ecol 31:1011–1022Google Scholar
  200. Tundis R, Loizzo MR, Statti GA et al (2007) Pyrrolizidine alkaloid profiles of the Senecio cineraria group (Asteraceae). Z Naturforsch C: Biosci 62c:467–472Google Scholar
  201. Urones JG, Barcala PB, Marcos IS et al (1988) Pyrrolizidine alkaloids from Senecio gallicus and S. adonidifolius. Phytochemistry 27:1507–1510Google Scholar
  202. Villarroel LH, Varea P, Caceres R (1988) lntergerrimine and usaramine alkaloids from Senecio murorum. Bol Soc Chil Quím 33:107–109Google Scholar
  203. Von Borstel K, Witte L, Hartmann T (1989) Pyrrolizidine alkaloid patterns in populations of Senecio vulgaris, S. vernalis and their hybrids. Phytochemistry 28:1635–1638Google Scholar
  204. Vrieling K, de Vos H, van Wijk CAM (1993) Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry 32:1141–1144Google Scholar
  205. Were O, Benn M, Munavu RM (1991) Pyrrolizidine alkaloids from Senecio hadiensis. J Nat Prod 54:491–499Google Scholar
  206. Were O, Benn M, Munavu RM (1993) The pyrrolizidine alkaloids of Senecio syringifolius and S. hadiensis from Kenya. Phytochemistry 32:1595–1602Google Scholar
  207. Wiedenfeld H, Roeder E (1979) Das Pyrrolizidinalkaloid Senecionin aus Senecio fuchsii. Phytochemistry 18:1083–1084Google Scholar
  208. Wiedenfeld H, Pastewka U, Stengl P et al (1981) Zur gaschromatografischen Bestimmung der Pyrrolizidinalkaloide aus einigen Senecioarten. Pharmazie 41:124–128Google Scholar
  209. Wiedenfeld H, Hendriks H, Bruius AP et al (1989) Zur Alkaloidführung von Senecio nemorensis L. ssp. fuchsii (Gmel.) Celak und Senecio nemorensis L. ssp. nemorensis (Rchb.) Celak. Sci Pharm 57:97–104Google Scholar
  210. Wiedenfeld H, Altanchimeg D, Gantur A et al (2002a) Toxic pyrrolizidine alkaloids from three Mongolian plants. A possible risk for cattle poisoning. J Nat Toxins 11:187–192PubMedGoogle Scholar
  211. Wiedenfeld H, Bourauel T, Roeder E (2002b) Pyrrolizidine Alkaloide in Petasites fragrans. Sci Pharm 70:407–411Google Scholar
  212. Wiedenfeld H, Narantuya S, Dumaa M et al (2003) Pyrrolizidine alkaloids from Ligularia sibirica Cass. and Tephroseris integrifolia L. Sci Pharm 71:129–132Google Scholar
  213. Wiedenfeld H, Montes C, Tawil B et al (2006) Pyrrolizidine alkaloid level in Senecio bicolor (Willd.) Tod, ssp. cineraria (DC.) from Middle Europe. Pharmazie 61:559–561PubMedGoogle Scholar
  214. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids; from plants via aphids to ladybirds. Naturwissenschaften 77:540–543Google Scholar
  215. Witte L, Ernst L, Adam H et al (1992a) Chemotypes of two pyrrolizidine alkaloid-containing Senecio species. Phytochemistry 31:559–565Google Scholar
  216. Witte L, Ernst L, Wray V et al (1992b) Revised structure of the main alkaloid of Senecio adonidifolius. Phytochemistry 31:1027–1028Google Scholar
  217. Wrobel JT (1985) Pyrrolizidine alkaloids. In: Brossi A (ed) The alkaloids, vol 26. Academic Press, London, pp 327–384Google Scholar
  218. Yamada K, Tatematsu H, Suziki M et al (1976) Isolation and the structures of two new alkaloids, petasitenine and neopetasitenine from Petasites japonicus Maxim. Chem Lett 5:461–464Google Scholar
  219. Zalkow LH, Asibal CF, Glinski JA et al (2004) Macrocyclic pyrrolizidine alkaloids from Senecio anonymus. Separation of a complex alkaloid extract using droplet counter-current chromatography. J Nat Prod 51:690–702Google Scholar
  220. Zdero C, Bohlmann F, King RM et al (1990) Co-occurrence of pyrrolizidine alkaloids and acylpyrrols in Senecio magnificus and constituents of other australian Senecio species. Phytochemistry 29:509–511Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biochemische Ökologie und Molekulare Evolution, Botanisches Institut und Botanischer GartenChristian-Albrechts-Universität zu KielKielGermany
  2. 2.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations