Phytochemistry Reviews

, Volume 10, Issue 4, pp 521–544 | Cite as

Advances in the synthesis and pharmacological activity of lupane-type triterpenoid saponins

Article

Abstract

Lupeol, betulin and betulinic acid are members of the so-called lupane-type triterpenoids. These natural products found worldwide in quite of lot of vegetables, fruits and plant species exhibit promising pharmacological activities including anti-inflammatory, anti-HIV and antitumor activities. Nevertheless, the poor pharmacokinetic properties of these cholesterol-like triterpenoids hampered further pharmaceutical developments. The synthesis of lupane-type saponins, i.e., sugar-derived lupanes, seems to be a good avenue to improve both their water solubility and pharmacological activity. The aims of this review are twofold: first, to describe the biological activity of naturally occurring lupane-type saponins, and second, report the different methodologies employed for the elaboration of glycosidic linkages at the C-3 and/or C-28 positions on the lupane core. The synthesis of both natural and unnatural lupane-type saponins is discussed with an emphasis on molecules exhibiting relevant biological activities.

Keywords

Chemical glycosylation Triterpenoid saponins Lupeol Betulin Betulinic acid 

Abbreviations

A549

Human lung carcinoma

Ara

α-l-Arabinopyranose

BF3·OEt2

Boron trifluoride diethyletherate

CGTase

Cyclodextrin glycosyltransferase

d-Ara

α-d-Arabinopyranose

DLD-1

Human colorectal adenocarcinoma

Gal

β-d-Galactopyranose

Glc

β-d-Glucopyranose

HIV

Human immunodeficiency virus

IC50

Half maximal inhibitory concentration

Man

α-d-Mannopyranose

PMT

Prodrug monotherapy

Rha

α-l-Rhamnopyranose

SAR

Structure-activity relationships

TCA

Trichloroacetimidate

TMSOTf

Trimethylsilyl trifluoromethanesulfonate

Xyl

β-d-Xylopyranose

Notes

Acknowledgments

The authors wish to thank Dr. Yves Janin for proof-reading this manuscript and the anonymous reviewers for helpful comments and suggestions. The financial support of the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT, fonds forestier 02) is gratefully acknowledged. C. G. wishes to acknowledge the Programme d’Aide Institutionnel à la Recherche de l’Université du Québec à Chicoutimi (PAIR-UQAC), the Fondation de l’UQAC as well as FQRNT for graduate scholarships.

References

  1. Aratanechemuge Y, Hibasami H, Sanpin K, Katsuzaki H, Imai K, Komiya T (2004) Induction of apoptosis by lupeol isolated from mokumem (Gossampinus malabarica L. Merr) in human promyelotic leukemia HL-60 cells. Oncol Rep 11:289–292PubMedGoogle Scholar
  2. Bachran C, Bachran S, Sutherland M, Bachran D, Fuchs H (2008) Saponins in tumor therapy. Mini-Rev Med Chem 8:575–584PubMedCrossRefGoogle Scholar
  3. Baglin I, Mitaine-Offer AC, Nour M, Tan K, Cavé C, Lacaille-Dubois MA (2003a) A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents. Mini-Rev Med Chem 3:525–539PubMedCrossRefGoogle Scholar
  4. Baglin I, Poumaroux A, Nour M, Tan K, Mitaine-Offer AC, Lacaille-Dubois MA, Chauffert B, Cavé C (2003b) New ursolic and betulinic derivatives as potential cytotoxic agents. J Enzym Inhib Med Chem 18:111–117CrossRefGoogle Scholar
  5. Bang SC, Kim Y, Lee JH, Ahn BZ (2005a) Triterpenoid saponins from the roots of Pulsatilla koreana. J Nat Prod 68:268–272PubMedCrossRefGoogle Scholar
  6. Bang SC, Lee JH, Song GY, Kim DH, Yoon MY, Ahn BZ (2005b) Antitumor activity of Pulsatilla koreana saponins and their structure-activity relationship. Chem Pharm Bull 53:1451–1454PubMedCrossRefGoogle Scholar
  7. Bi Y, Xu JY, Wu XM (2005) Advances in research of betulinic acids. Chin J New Drugs 14:23–26Google Scholar
  8. Bliard C, Massiot G, Nazabadioko S (1994) Glycosylation of acids under phase transfer conditions. Partial synthesis of saponins. Tetrahedron Lett 35:6107–6108CrossRefGoogle Scholar
  9. Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer HK, Gesson JP, Koch M, Monneret C (1998) Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 58:1195–1201PubMedGoogle Scholar
  10. Braca A, Autore G, De Simone F, Marzocco S, Morelli I, Venturella F, De Tommasi N (2004) Cytotoxic saponins from Schefflera rotundifolia. Planta Med 70:960–966PubMedCrossRefGoogle Scholar
  11. Bruneton J (2009) Pharmacognosie, phytochimie, plantes médicinales, 4th edn. Technique & Documentation, ParisGoogle Scholar
  12. Cham BE, Daunter B (1990) Solasodine glycosides. Selective cytotoxicity for cancer cells and inhibition of cytotoxicity by rhamnose in mice with sarcoma 180. Cancer Lett 55:221–225PubMedCrossRefGoogle Scholar
  13. Chang LC, Tsai TR, Wang JJ, Lin CN, Kuo KW (1998) The rhamnose moiety of solamargine plays a crucial role in triggering cell death by apoptosis. Biochem Biophys Res Commun 242:21–25PubMedCrossRefGoogle Scholar
  14. Chatterjee P, Pezzuto JM, Kouzi SA (1999) Glucosidation of betulinic acid by Cunninghamella species. J Nat Prod 62:761–763PubMedCrossRefGoogle Scholar
  15. Chaturvedi PK, Bhui K, Shukla Y (2008) Lupeol: Connotations for chemoprevention. Cancer Lett 263:1–13PubMedCrossRefGoogle Scholar
  16. Chen X, Wu B, Wang PG (2003) Glucuronides in anti-cancer therapy. Curr Med Chem Anti-Cancer Agents 3:139–150CrossRefGoogle Scholar
  17. Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90–114PubMedCrossRefGoogle Scholar
  18. Cioffi G, Braca A, Autore G, Morelli I, Pinto A, Venturella F, De Tommasi N (2003) Cytotoxic saponins from Schefflera fagueti. Planta Med 69:750–756PubMedCrossRefGoogle Scholar
  19. Cmoch P, Pakulski Z, Swaczynová J, Strnad M (2008) Synthesis of lupane-type saponins bearing mannosyl and 3, 6-branched trimannosyl residues and their evaluation as anticancer agents. Carbohydr Res 343:995–1003PubMedCrossRefGoogle Scholar
  20. De Graaf M, Boven E, Scheeren HW, Haisma HJ, Pinedo HM (2002) Beta-glucuronidase-mediated drug release. Curr Pharm Design 8:1391–1403CrossRefGoogle Scholar
  21. Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23:394–411PubMedCrossRefGoogle Scholar
  22. Eiznhamer DA, Xu ZQ (2004) Betulinic acid: a promising anticancer candidate. IDrugs 7:359–373PubMedGoogle Scholar
  23. Evers M, Poujade C, Soler F, Ribeill Y, James C, Lelièvre Y, Gueguen JC, Reisdorf D, Morize I, Pauwels R, De Clercq E, Hénin Y, Bousseau A, Mayaux JF, Le Pecq JB, Dereu N (1996) Betulinic acid derivatives: A new class of human immunodeficiency virus type 1 specific inhibitors with a new mode of action. J Med Chem 39:1056–1068PubMedCrossRefGoogle Scholar
  24. Fernández MA, de las Heras B, García MD, Sáenz MT, Villar A (2001) New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J Pharm Pharmacol 53:1533–1539PubMedCrossRefGoogle Scholar
  25. Flekther OB, Baltina LA, Spirikhin LV, Baikova IP, Tolstikov GA (1998) Glycosylation of betulin acetates with glycals. Russ Chem B 47:513–516CrossRefGoogle Scholar
  26. Flekther OB, Baltina LA, Tolstikov GA (2000) Glycals in the stereoselective synthesis of triterpene 2-deoxy-α-l-glycosides under conditions of acidic catalysis. J Nat Prod 63:992–994CrossRefGoogle Scholar
  27. Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Brit J Nutr 88:587–605PubMedCrossRefGoogle Scholar
  28. Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS, Lee KH (1994) Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57:243–247PubMedCrossRefGoogle Scholar
  29. Galonić DP, Gin DY (2007) Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 446:1000–1007PubMedCrossRefGoogle Scholar
  30. Gao XD, Ye WC, Yu ACH, Zhang Y, Tan RX, Li M, Hsiao WLW (2003) Pulsatilloside A and anemoside A3 protect PC12 cells from apoptosis induced by sodium cyanide and glucose deprivation. Planta Med 69:171–174PubMedCrossRefGoogle Scholar
  31. Gauthier C, Legault J, Lebrun M, Dufour P, Pichette A (2006) Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents. Bioorg Med Chem 14:6713–6725PubMedCrossRefGoogle Scholar
  32. Gauthier C, Legault J, Lavoie S, Rondeau S, Tremblay S, Pichette A (2008) Synthesis of two natural betulinic acid saponins containing α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranose and their analogues. Tetrahedron 64:7386–7399CrossRefGoogle Scholar
  33. Gauthier C, Legault J, Pichette A (2009a) Recent progress in the synthesis of naturally occurring triterpenoid saponins. Mini-Rev Org Chem 6:321–344CrossRefGoogle Scholar
  34. Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A (2009b) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17:2002–2008PubMedCrossRefGoogle Scholar
  35. Gauthier C, Legault J, Lavoie S, Rondeau S, Tremblay S, Pichette A (2009c) Synthesis and cytotoxicity of bidesmosidic betulin and betulinic acid saponins. J Nat Prod 72:72–81PubMedCrossRefGoogle Scholar
  36. Gauthier C, Legault J, Piochon M, Lavoie S, Tremblay S, Pichette A (2009d) Synthesis, cytotoxicity, and haemolytic activity of chacotrioside lupane-type neosaponins and their germanicane-type rearrangement products. Bioorg Med Chem Lett 19:2310–2314PubMedCrossRefGoogle Scholar
  37. Gauthier C, Legault J, Rondeau S, Pichette A (2009e) Synthesis of betulinic acid acyl glucuronide for application in anticancer prodrug monotherapy. Tetrahedron Lett 50:988–991CrossRefGoogle Scholar
  38. Geetha T, Varalakshmi P, Latha M (1998) Effect of triterpenes from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats. Pharmacol Res 37:191–195PubMedCrossRefGoogle Scholar
  39. Hata K, Hori K, Ogasawara H, Takahashi S (2003) Anti-leukemia activities of lup-28-al-20(29)-en-3-one, a lupane triterpene. Toxicol Lett 143:1–7PubMedCrossRefGoogle Scholar
  40. Hayek EWH, Jordis U, Moche W, Sauter F (1989) A bicentennial of betulin. Phytochemistry 28:2229–2242CrossRefGoogle Scholar
  41. Hu K, Dong A, Yao X (1996) Antineoplastic agents; I. Three spirostanol glycosides from rhizomes of Dioscorea collettii var. hypoglauca. Planta Med 62:573–575PubMedCrossRefGoogle Scholar
  42. Ikeda T, Tsumagari H, Honbu T, Nohara T (2003) Cytotoxic activity of steroidal glycosides from Solanum plants. Biol Pharm Bull 26:1198–1201PubMedCrossRefGoogle Scholar
  43. Jäger S, Winkler K, Pfüller U, Scheffler A (2007) Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med 73:157–162PubMedCrossRefGoogle Scholar
  44. Just MJ, Carmen Recio M, Giner RM, Cuéllar MJ, Máñez S, Bilia AR, Ríos JL (1998) Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens. Planta Med 64:404–407PubMedCrossRefGoogle Scholar
  45. Kashiwada Y, Hashimoto F, Cosentino LM, Chen CH, Garrett PE, Lee KH (1996) Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J Med Chem 39:1016–1017PubMedCrossRefGoogle Scholar
  46. Kessler JH, Mullauer FB, de Roo GM, Medema JP (2007) Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett 25:132–145CrossRefGoogle Scholar
  47. Kim DSHL, Pezzuto JM, Pisha E (1998) Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg Med Chem Lett 8:1707–1712PubMedCrossRefGoogle Scholar
  48. Klinotová E, Krecek V, Klinot J, Endová M, Eisenreichová J, Budešínský M, Štícha M (1997) Glycosylation of triterpene alcohols and acids of the lupane and a-secolupane series. Collect Czech Chem C 62:1776–1798CrossRefGoogle Scholar
  49. Koenigs W, Knorr E (1901) Some derivatives of grape sugars and galactose. Ber 34:957–981Google Scholar
  50. Kolomitsyn IV, Holy J, Perkins E, Krasutsky PA (2007) Analysis and antiproliferative activity of bark extractives of Betula neoalaskana and B. papyrifera. Synthesis of the most active extractive component—betulin 3-caffeate. Nat Prod Commun 2:17–26Google Scholar
  51. Krasutsky PA (2006) Birch bark research and development. Nat Prod Rep 23:919–942PubMedCrossRefGoogle Scholar
  52. Křen V, Martinková L (2001) Glycosides in medicine: “the role of glycosidic residue in biological activity”. Curr Med Chem 8:1313–1338Google Scholar
  53. Lacaille-Dubois MA (2000) Biologically and pharmacologically active saponins from plants: recent advances. In: Oleszek O, Marston A (eds) Saponins in food, feedstuffs and medicinal plants, vol 45. Kluwer, The Netherlands, pp 205–218Google Scholar
  54. Lacaille-Dubois MA (2005) Bioactive saponins with cancer related and immunomodulatory activity: recent developments. In: Rahman AU (ed) Studies in natural products chemistry, vol 32. Elsevier, The Netherlands, pp 209–246Google Scholar
  55. Lautrette S, Granet R, Krausz P (2004) A new method of solvent free O- and N-glycosylation using activated carbon fiber (ACF) as a promoter. Application to the synthesis of saponin and nucleoside analogues. Chem Commun 586–587Google Scholar
  56. Lee KT, Sohn IC, Park HJ, Kim DW, Jung GO, Park KY (2000) Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus. Planta Med 66:329–332PubMedCrossRefGoogle Scholar
  57. Levy DE, Fügedi P (2006) The organic chemistry of sugars. CRC Press, Boca RatonGoogle Scholar
  58. Li TS, Wang JX, Zheng XJ (1998) Simple synthesis of allobetulin, 28-oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids. J Chem Soc Perkin Trans 1:3957–3965CrossRefGoogle Scholar
  59. Liu MJ, Wang Z, Ju Y, Zhou JB, Wang Y, Wong RNS (2004) The mitotic-arresting and apoptosis-inducing effects of diosgenyl saponins on human leukemia cell lines. Biol Pharm Bull 27:1059–1065PubMedCrossRefGoogle Scholar
  60. Mimaki Y, Yokosuka A, Kuroda M, Hamanaka M, Sakuma C, Sashida Y (2001) New bidesmosidic triterpene saponins from the roots of Pulsatilla chinensis. J Nat Prod 64:1226–1229PubMedCrossRefGoogle Scholar
  61. Moriarity DM, Huang J, Yancey CA, Zhang P, Setzer WN, Lawton RO, Bates RB, Caldera S (1998) Lupeol is the cytotoxic principle in the leaf extract of Dendropanax cf. querceti. Planta Med 64:370–372PubMedCrossRefGoogle Scholar
  62. Mukherjee R, Kumar V, Srivastava SK, Agarwal SK, Burman AC (2006) Betulinic acid derivatives as anticancer agents: structure activity relationship. Curr Med Chem-Anti-Cancer Agents 6:271–279CrossRefGoogle Scholar
  63. Mullauer FB, Kessler JH, Medema JP (2009) Betulin is a potent anti-tumor agent that is enhanced by cholesterol. Plos One 4:e1PubMedCrossRefGoogle Scholar
  64. Nakamura T, Komori C, Lee YY, Hashimoto F, Yahara S, Nohara T, Ejima A (1996) Cytotoxic activities of Solanum steroidal glycosides. Biol Pharm Bull 19:564–566PubMedCrossRefGoogle Scholar
  65. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426PubMedCrossRefGoogle Scholar
  66. O’Connell MM, Bentley MD, Campbell CS, Cole BJW (1988) Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27:2175–2176CrossRefGoogle Scholar
  67. Oda K, Matsuda H, Murakami T, Katayama S, Ohgitani T, Yoshikawa M (2000) Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biol Chem 381:67–74PubMedCrossRefGoogle Scholar
  68. Ohara S, Hishiyama S (1994) Utilization of triterpenoids I. Synthesis of betulin glycosides by cyclodextrin glycosyltransferase. Mokuzai Gakkaishi 40:444–451Google Scholar
  69. Ohara S, Ohira T (2003) Plant growth regulation effects of triterpenoid saponins. J Wood Sci 49:59–64CrossRefGoogle Scholar
  70. Ovesná Z, Vachálková A, Horváthová K, Tóthová D (2004) Pentacyclic triterpenoic acids: new chemoprotective compounds. Neoplasma 51:327–333PubMedGoogle Scholar
  71. Pakulski Z (2005) Regioselective glycosylation of unprotected mannosides: a convenient access to high-mannose type saponins. Polish J Chem 79:361–367Google Scholar
  72. Park HJ, Kwon SH, Lee JH, Lee KH, Miyamoto KI, Lee KT (2001) Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Med 67:118–121PubMedCrossRefGoogle Scholar
  73. Patočka J (2003) Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed 1:7–12Google Scholar
  74. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CWW, Fong HHS, Kinghorn AD, Brown DM, Wani MC, Wall ME, Hieken TJ, Das Gupta TK, Pezzuto JM (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1:1046–1051PubMedCrossRefGoogle Scholar
  75. Pyo JS, Roh SH, Kim DK, Lee JG, Lee YY, Hong SS, Kwon SW, Park JH (2009) Anti-cancer effect of betulin on a human lung cancer cell line: a pharmacoproteomic approach using 2 D SDS PAGE coupled with nano-HPLC tandem mass spectrometry. Planta Med 75:127–131PubMedCrossRefGoogle Scholar
  76. Rao AV, Gurfinkel DM (2000) The bioactivity of saponins: triterpenoid and steroidal glycosides. Drug Metab Drug Interac 17:211–235CrossRefGoogle Scholar
  77. Safayhi H, Sailer ER (1997) Anti-inflammatory actions of pentacyclic triterpenes. Planta Med 63:487–493PubMedCrossRefGoogle Scholar
  78. Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285:109–115PubMedCrossRefGoogle Scholar
  79. Salzwedel K, Martin DE, Sakalian M (2007) Maturation inhibitors: a new therapeutic class targets the virus structure. AIDS Rev 9:162–172PubMedGoogle Scholar
  80. Sami A, Taru M, Salme K, Jari YK (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1–13CrossRefGoogle Scholar
  81. Samoshina NF, Denisenko MV, Denisenko VA, Uvarova NI (2003) Synthesis of glycosides of lupane-type triterpene acids. Chem Nat Compd 39:575–582CrossRefGoogle Scholar
  82. Schmidt RR, Toepfer A (1991) Glycosylation with highly reactive glycosyl donors: efficiency of the inverse procedure. Tetrahedron Lett 32:3353–3356CrossRefGoogle Scholar
  83. Setzer WN, Setzer MC (2003) Plant-derived triterpenoids as potential antineoplastic agents. Mini-Rev Med Chem 3:540–556PubMedCrossRefGoogle Scholar
  84. Smith TA (1999) Facilitative glucose transporter expression in human cancer tissue. Brit J Biomed Sci 56:285–292Google Scholar
  85. Soler F, Poujade C, Evers M, Carry JC, Hénin Y, Bousseau A, Huet T, Pauwels R, De Clercq E, Mayaux JF, Le Pecq JB, Dereu N (1996) Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry. J Med Chem 39:1069–1083PubMedCrossRefGoogle Scholar
  86. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243PubMedCrossRefGoogle Scholar
  87. Steele JCP, Warhurst DC, Kirby GC, Simmonds MSJ (1999) In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res 13:115–119PubMedCrossRefGoogle Scholar
  88. Sun H, Fang WS (2006) Structure-activity relationships of oleanane- and ursane-type triterpenoids. Bot Stud 47:339–368Google Scholar
  89. Thibeault D, Gauthier C, Legault J, Bouchard J, Dufour P, Pichette A (2007) Synthesis and structure-activity relationship study of cytotoxic germanicane- and lupane-type 3β-O-monodesmosidic saponins starting from betulin. Bioorg Med Chem 15:6144–6157PubMedCrossRefGoogle Scholar
  90. Tiwari KP, Srivastava SD, Srivastava SK (1980) α-l-Rhamnopyranosyl-3β-hydroxy-lup-20(29)-en-28-oic acid from the stem of Dillenia pentagyna. Phytochemistry 19:980–981CrossRefGoogle Scholar
  91. Tolstikova TG, Sorokina IV, Tolstikov GA, Tolstikov AG, Flekther OB (2006) Biological activity and pharmacological prospects of lupane triterpenoids: I. Natural lupane derivatives. Russ J Bioorg Chem 32:37–49CrossRefGoogle Scholar
  92. Uvarova NI, Oshitok GI, Elyakov GB (1973) Synthesis of steroid and triterpenoid glycosides by the orthoester method. Carbohydr Res 27:79–87CrossRefGoogle Scholar
  93. Uvarova NI, Atopkina LN, Elyakov GB (1980) Synthesis of triterpene and steroid glycosides. Carbohydr Res 83:33–42CrossRefGoogle Scholar
  94. Wang Y, Zhang Y, Zhu Z, Zhu S, Li Y, Li M, Yu B (2007) Exploration of the correlation between the structure, haemolytic activity, and cytotoxicity of steroid saponins. Bioorg Med Chem 15:2528–2532PubMedCrossRefGoogle Scholar
  95. Wen Z, Stern ST, Martin DE, Lee KH, Smith PC (2006) Structural characterization of anti-HIV drug candidate PA-457 [3-O-(3′-3′-dimethylsuccinyl)-betulinic acid] and its acyl glucuronides in rat bile and evaluation of in vitro stability in human and animal liver microsomes and plasma. Drug Metab Dispos 34:1436–1442PubMedCrossRefGoogle Scholar
  96. Ye W, Zhang Q, Hsiao WWL, Zhao S, Che CT (2002) New lupane glycosides from Pulsatilla chinensis. Planta Med 68:183–186PubMedCrossRefGoogle Scholar
  97. Yogeeswari P, Sriram D (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 12:657–666PubMedCrossRefGoogle Scholar
  98. Yoshizumi K, Hirano K, Ando H, Hirai Y, Ida Y, Tsuji T, Tanaka T, Satouchi K, Terao J (2006) Lupane-type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J Agric Food Chem 54:335–341PubMedCrossRefGoogle Scholar
  99. You YJ, Nam NH, Kim Y, Bae KH, Ahn BZ (2003) Antiangiogenic activity of lupeol from Bombax ceiba. Phytother Res 17:341–344PubMedCrossRefGoogle Scholar
  100. Yu B, Sun J (2009) Current synthesis of triterpene saponins. Chem Asian J 4:642–654PubMedCrossRefGoogle Scholar
  101. Yu B, Zhang Y, Tang P (2007) Carbohydrate chemistry in the total synthesis of saponins. Eur J Org Chem 31:5145–5161CrossRefGoogle Scholar
  102. Yuodvirshis AM, Troshchenko AT (1969) The synthesis of triterpenoid glycosides. Part 4. The synthesis of 3,28 (or 30)-bis-O-glycosides of oleanolic, ursolic, 11-keto-oleanolic, 18-beta-H-glycyrrhetic and betulinic acids. Izv Sib Otd Akad Nauk SSSR Ser Khim Nauk 2:129–138Google Scholar
  103. Yuodvirshis AM, Sinyakova LG, Troshchenko AT (1968) The synthesis of triterpenoid glycosides. Part 3. 11-Keto-oleanolic, 12-ketodihydro-oleanolic and betulinic acids 28-O-glycosides. Izv Sib Otd Akad Nauk SSSR Ser Khim Nauk 2:123–127Google Scholar
  104. Ziegler HL, Franzyk H, Sairafianpour M, Tabatabai M, Tehrani MD, Bagherzadeh K, Hägerstrand H, Staerk D, Jaroszewski JW (2004) Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues. Bioorg Med Chem 12:119–127PubMedCrossRefGoogle Scholar
  105. Ziegler HL, Staalsø T, Jaroszewski JW (2006) Loading of erythrocyte membrane with pentacylic triterpenes inhibits Plasmodium falciparum invasion. Planta Med 72:640–642PubMedCrossRefGoogle Scholar
  106. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 175:17–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratoire LASEVE, Chaire de Recherche sur les Agents Anticancéreux d’Origine Naturelle, Département des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations