Phytochemistry Reviews

, Volume 9, Issue 2, pp 315–342 | Cite as

Azaphilones: a class of fungal metabolites with diverse biological activities



This review presents an overview of azaphilones isolated from different species of fungi, detailing their chemical structures and biological activities as covered in the recent literature. Over 170 different azaphilone compounds occur in fungi belonging to 23 genera from 13 families: these azaphilones can be classified into ten different structural groups. Numerous azaphilone structures have been described, particularly from members of the Trichocomaceae and Xylariaceae families. Azaphilones exhibit a wide range of interesting biological activities, such as antimicrobial, antifungal, antiviral, antioxidant, cytotoxic, nematicidal and anti-inflammatory activities. Many of these effects may be explained by the reactions of azaphilones with amino groups, such as those found in amino acids, proteins and nucleic acids, resulting in the formation of vinylogous γ-pyridones.


Azaphilones Bioactivity Lactones Trichocomaceae Xylariaceae 


  1. Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H (2005a) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodiversity 2:1305–1309CrossRefGoogle Scholar
  2. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005b) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus—fermented rice (Red-Mold Rice) and their chemopreventive effects. J Agric Food Chem 53:562–565PubMedCrossRefGoogle Scholar
  3. Anke H, Kemmer T, Höfle G (1981) Deflectins, new antimicrobial azaphilones from Aspergillus deflectus. J Antibiot 34:923–928PubMedGoogle Scholar
  4. Arai N, Shiomi K, Tomoda H, Tabata N, Yang DJ, Masuma R, Kawakubo T, Omura S (1995) Isochromophilones III-VI, inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium multicolor FO-3216. J Antibiot 48:696–702PubMedGoogle Scholar
  5. Ariza MR, Larsen TO, Petersen BO, Duus JO, Christophersen C, Barrero AF (2001) A novel Alkaloid Serantrypinone and the Spiro Azaphilone Daldinin D from Penicillium thymicola. J Nat Prod 64:1590–1592CrossRefGoogle Scholar
  6. Beed FD, Strange RN, Onfroy C, Tivoli B (1994) Virulence for faba bean and production of ascochitine by Ascochyta fabae. Plant Pathol 43:987–997CrossRefGoogle Scholar
  7. Bell PJL, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125:9304–9305PubMedCrossRefGoogle Scholar
  8. Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213PubMedCrossRefGoogle Scholar
  9. Buchanan MS, Hashimoto T, Yasuda A, Takaoka S, Kan Y, Asakawa Y (1995) The structures of novel cytochalasins, azaphilones, and aromatic compounds isolated from five ascomycetous fungi. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 37:409–414Google Scholar
  10. Buechi G, White JD, Wogan GN (1965) The structures of mitorubrin and mitorubrinol. J Am Chem Soc 87:3484–3489PubMedCrossRefGoogle Scholar
  11. Campoy S, Rumbero A, Martin JF, Liras P (2006) Characterization of a hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488–496PubMedCrossRefGoogle Scholar
  12. Chidananda C, Rao L, Sattur A (2006) Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol Lett 28:1633–1636PubMedCrossRefGoogle Scholar
  13. Closse A, Hauser D (1973) Isolation and constitution of chrysodin. Helv Chim Acta 56:2694–2698 Journal written in GermanPubMedCrossRefGoogle Scholar
  14. Ding G, Liu S, Guo L, Zhou Y, Che Y (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71:615–618PubMedCrossRefGoogle Scholar
  15. Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69PubMedCrossRefGoogle Scholar
  16. Duncan SJ, Grueschow S, Williams DH, McNicholas C, Purewal R, Hajek M, Gerlitz M, Martin S, Wrigley SK, Moore M (2001) Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123:554–560PubMedCrossRefGoogle Scholar
  17. Duncan SJ, Cooper MA, Williams DH (2003) Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem Commun 3:316–317CrossRefGoogle Scholar
  18. Endo A, Kuroda M (1976) Citrinin, an inhibitor of cholesterol synthesis. J Antibiot 29:841–843PubMedGoogle Scholar
  19. Frisvad JC, Filtenborg O, Samson RA, Stolk AC (1990) Chemotaxonomy of the genus Talaromyces. Antonie van Leeuwenhoek 57:179–189PubMedCrossRefGoogle Scholar
  20. Fujimoto H, Matsudo T, Yamaguchi A, Yamazaki M (1990) Two new fungal azaphilones from Talaromyces luteus, with monoamine oxidase inhibitory effect. Heterocycles 30:607–616CrossRefGoogle Scholar
  21. Gill M (1996) Pigments of fungi (Macromycetes). Nat Prod Rep 13:513–528CrossRefGoogle Scholar
  22. Gill M (1999) Pigments of fungi (Macromycetes). Nat Prod Rep 16:301–317CrossRefGoogle Scholar
  23. Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1–317Google Scholar
  24. Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite of Penicillium hirayamae Udagawa. J Chem Soc 21:3575–3577Google Scholar
  25. Hajjaj H, Klaebe A, Loret MO, Goma G, Blanc PJ, Francois J (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314PubMedGoogle Scholar
  26. Haraguchi H, Taniguchi M, Motoba K, Shibata K, Oi S, Hashimoto K (1990) Chrysodin, an antifungal antimetabolite. Agric Biol Chem 54:2167–2168Google Scholar
  27. Hashimoto T, Asakawa Y (1998) Biologically active substances of Japanese inedible mushrooms. Heterocycles 47:1067–1110CrossRefGoogle Scholar
  28. Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A.apprx.C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2379–2397Google Scholar
  29. Hellwig V, Ju YM, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54CrossRefGoogle Scholar
  30. Hobbs C (2003) Medicinal mushrooms: an exploration of tradition, health and culture. Botanica press, CanadaGoogle Scholar
  31. Hutchinson CR (1999) Microbial polyketide synthases: more and more prolific. Proc Natl Acad Sci USA 96:3336–3338PubMedCrossRefGoogle Scholar
  32. Hyodo S, Fujita K, Kasuya O, Takahashi I, Uzawa J, Koshino H (1994) Structures of phospholipase A2 inhibitors, ergophilone A and B. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36:760–767Google Scholar
  33. Itabashi T, Nozawa K, Nakajima S, Kawai KI (1993) A new azaphilone, falconensin H, from Emericella falconensis. Chem Pharm Bull 41:2040–2041Google Scholar
  34. Itabashi T, Ogasawara N, Nozawa K, Kawai KI (1996) Isolation and structures of new azaphilone derivatives, falconensins E-G, from Emericella falconensis and absolute configurations of falconensins A-G. Chem Pharm Bull 44:2213–2217Google Scholar
  35. Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575PubMedCrossRefGoogle Scholar
  36. Ju HM, Hsieh HM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865PubMedCrossRefGoogle Scholar
  37. Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal Azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69:891–895PubMedCrossRefGoogle Scholar
  38. Kimura T, Nishida M, Kuramochi K, Sugawara F, Yoshida H, Mizushina Y (2008) Novel azaphilones, kasanosins A and B, which are specific inhibitors of eukaryotic DNA polymerases beta and lambda from Talaromyces sp. Bioorg Med Chem 16:4594–4599PubMedCrossRefGoogle Scholar
  39. Kirk PM, Cannon PE, Minter DW, Stalpers JA (2008) Dictionary of fungi, 10th edn. CABI Europe, UKGoogle Scholar
  40. Kono K, Tanaka M, Ono Y, Hosoya T, Ogita T, Kohama T (2001) S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J Antibiot 54:415–420PubMedGoogle Scholar
  41. Kurono M, Nakanishi K, Shindo K, Tada M (1963) Biosyntheses of monascorubrin and monascoflavin. Chem Pharm Bull 11:359–362Google Scholar
  42. Kusnick C, Jansen R, Liberra K, Lindequist U (2002) Ascochital, a new metabolite from the marine ascomycete Kirschsteiniothelia maritima. Pharmazie 57:510–512PubMedGoogle Scholar
  43. Laakso JA, Raulli R, McElhaney-Feser GE, Actor P, Underiner TL, Hotovec BJ, Mocek U, Cihlar RL, SEJr Broedel (2003) CT2108A and B: new fatty acid synthase inhibitors as antifungal agents. J Nat Prod 66:1041–1046PubMedCrossRefGoogle Scholar
  44. Lesova K, Sturdikova M, Rosenberg M (2000a) Factors affecting the production of (−)- mitorubrinic acid by Penicillium funiculosum. J Basic Microbiol 40:369–375PubMedCrossRefGoogle Scholar
  45. Lesova K, Sturdikova M, Tybitanclova K (2000b) Selection of mutant strain of Penicillium funiculosum for (−)- mitorubrinic acid production. Biologia (Bratislava) 55:633–636Google Scholar
  46. Lindequist U, Niedermeyer THJ, Jülich WD (2005) The pharmacological potential of mushrooms. eCAM 2:285–299PubMedGoogle Scholar
  47. Locci R, Merlini L, Nasini G, Locci JR (1967) Mitorubrinic acid and related compounds from a strain of Penicillium funiculosum. Gioron Microbiol 15:92–102Google Scholar
  48. Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364Google Scholar
  49. Manchand PS, Whalley WB, Chen FC (1973) Isolation and structure of ankaflavine. New pigment from Monascus anka. Phytochemistry 12:2531–2532CrossRefGoogle Scholar
  50. Mapari S, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24PubMedCrossRefGoogle Scholar
  51. Marumo S, Nukina M, Kondo S, Tomiyama K (1982) Lunatoic acid A, a morphogenic substance inducing chlamydospore-like cells in some fungi. Agric Biol Chem 46:2399–2401Google Scholar
  52. Matsuzaki K, Tanaka H, Omura S (1995) Isochromophilones I and II, novel inhibitors against gp120-CD4 binding produced by Penicillium multicolor FO-2338. II. Structure elucidation. J Antibiot 48:708–713PubMedGoogle Scholar
  53. Matsuzaki K, Tahara H, Inokoshi J, Tanaka H, Masuma R, Omura S (1998) New brominated and halogen-less derivatives and structure-activity relationship of azaphilones inhibiting gp120-CD4 binding. J Antibiot 51:1004–1011PubMedGoogle Scholar
  54. Merlini L, Mondelli R, Nasini G, Hesse M (1973) Structure of wortmin, a new metabolite from Penicillium wortmannii. Helv Chim Acta 561:232–239CrossRefGoogle Scholar
  55. Michael AP, Grace EJ, Kotiw M, Barrow RA (2003) Isochromophilone IX, a novel GABA-containing metabolite isolated from a cultured fungus, Penicillium sp. Aust J Chem 56:13–15CrossRefGoogle Scholar
  56. Ming GH, Yun ZW, Ding G, Saparpakorn P, Chun SY, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun (Cambridge, UK) 45:5978–5980CrossRefGoogle Scholar
  57. Miyake T, Kono I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res 14:194–197CrossRefGoogle Scholar
  58. Molitoris HP (2002) Mushrooms in medicine, folklore and religion. Feddes Repertiorum 113:165–182Google Scholar
  59. Mühlbauer A, Triebel D, Persoh D, Wollweber H, Seip S, Stadler M (2002) Macrocarpones, novel metabolites from stromata of Hypoxylon macrocarpum and new evidence on thechemotaxonomy of Hypoxylon. Mycol Prog 1:235–248CrossRefGoogle Scholar
  60. Muroga Y, Yamada T, Numata A, Tanaka R (2008) Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J Antibiot 61:615–622CrossRefGoogle Scholar
  61. Muroga Y, Yamada T, Numata A, Tanaka R (2009) Chaetomugilins I–O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65:7580–7586CrossRefGoogle Scholar
  62. Nakajima H, Kimura Y, Hamasaki T (1992) Spiciferinone, an azaphilone phytotoxin produced by the fungus Cochiliobolus spicifer. Phytochemistry 31:105–107CrossRefGoogle Scholar
  63. Nam JY, Son KH, Kim HK, Han MY, Kim SU, Choi JD, Kwon BM (2000) Sclerotiorin and isochromophilone IV: inhibitors of Grb2-Shc interaction, isolated from Penicillium multicolor F1753. J Microbiol Biotechnol 10:544–546Google Scholar
  64. Natsume M, Takahashi Y, Marumo S (1988) Chlamydospore-like cell-inducing substances of fungi: close correlation between chemical reactivity with methylamine and biological activity. Agric Biol Chem 52:307–331Google Scholar
  65. Nukina M, Marumo S (1977) Lunatoic acid A and B, aversion factor and its related metabolite of Cochliobolus lunata. Tetrahedron Lett 30:2603–2606CrossRefGoogle Scholar
  66. Ogasawara N, Kawai KI (1998) Hydrogenated azaphilones from Emericella falconensis and E. fruticulosa. Phytochemistry 47:1131–1135CrossRefGoogle Scholar
  67. Osmanova N (2010) Screening of antimicrobial effects of selected fungi and studies on bioactive constituents of Bulgaria inquinans (Pers.) Fr. (Bulgariaceae) and Meripilus giganteus (Pers.: Fr.) P. Karst. (Meripilaceae)Google Scholar
  68. Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, Ainsworth AM, Katzer W, Cheng XM (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 48:913–923PubMedGoogle Scholar
  69. Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim JC (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbial Lett 252:309–313CrossRefGoogle Scholar
  70. Pelaez F, Gonzalez V, Platas G, Sanchez-Ballesteros J, Rubio V (2008) Molecular phylogenetic studies within the Xylariaceae based on ribosomal DNA sequences. Fungal Divers 31:111–134Google Scholar
  71. Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P (2008) Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron 64:9636–9645CrossRefGoogle Scholar
  72. Pisareva E, Savov V, Kujumdzieva A (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Z. Naturforsch 60:116–120Google Scholar
  73. Proksa B, Uhrin D, Fuska J, Michalkova E (1992) (−)- Mitorubrinol and phthaldehydic acids, new metabolites of Penicillium vermiculatum DANG. Collect Czech Chem Commun 57:408–414CrossRefGoogle Scholar
  74. Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997PubMedGoogle Scholar
  75. Quang DN, Hashimoto T, Stadler M, Asakawa Y (2004a) New azaphilones from the inedible mushroom Hypoxylon rubiginosum. J Nat Prod 67:1152–1155PubMedCrossRefGoogle Scholar
  76. Quang DN, Hashimoto T, Tanaka M, Stadler M, Asakawa Y (2004b) Cyclic azaphilones daldinins E and F from the ascomycete fungus Hypoxylon fuscum (Xylariaceae). Phytochemistry 65:469–473PubMedCrossRefGoogle Scholar
  77. Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y (2005a) Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron 61:1743–1748CrossRefGoogle Scholar
  78. Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005b) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry 66:797–809PubMedCrossRefGoogle Scholar
  79. Quang DN, Hashimoto T, Stadler M, Asakawa Y (2005c) Dimeric azaphilones from the xylariaceous ascomycete Hypoxylon rutilum. Tetrahedron 61:8451–8455CrossRefGoogle Scholar
  80. Quang DN, Hashimoto T, Stadler M, Radulovic N, Asakawa Y (2005d) Antimicrobial azaphilones from the fungus Hypoxylon multiforme. Planta Med 71:1058–1062PubMedCrossRefGoogle Scholar
  81. Quang DN, Hashimoto T, Asakawa Y (2006a) Inedible mushrooms: a good source of biologically active substances. Chem Rec 6:79–99PubMedCrossRefGoogle Scholar
  82. Quang DN, Harinantenaina L, Nishizawa T, Hashimoto T, Kohchi C, Soma GI, Asakawa Y (2006b) Inhibition of nitric oxide production in RAW 264.7 cells by azaphilones from xylariaceous fungi. Biol Pharm Bull 29:34–37PubMedCrossRefGoogle Scholar
  83. Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006c) Cohaerins C- F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron 62:6349–6354CrossRefGoogle Scholar
  84. Rogers JD, Ju YM, Watling R, Whalley AJS (1999) A reinterpretation of Daldinia concentrica based upon a recently discovered specimen. Mycotaxon 72:507–520Google Scholar
  85. Sakuda S, Otsubo Y, Yamada Y (1995) Structure of patulodin, a new azaphilone epoxide, produced by Penicillium urticae. J Antibiot 48:85–86PubMedGoogle Scholar
  86. Seibert SF, Eguereva E, Krick A, Kehraus S, Voloshina E, Raabe G, Fleischhauer J, Leistner E, Wiese M, Prinz H, Alexandrov K, Janning P, Waldmann H, Koenig GM (2006) Polyketides from the marine-derived fungus Ascochyta salicorniae and their potential to inhibit protein phosphatases. Org Biomol Chem 4:2233–2240PubMedCrossRefGoogle Scholar
  87. Seto H, Tanabe M (1974) Utilization of 13C–13C coupling in structural and biosynthetic studies. III. Ochrephilone—a new fungal metabolite. Tetrahedron Lett 15:651–654CrossRefGoogle Scholar
  88. Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170PubMedCrossRefGoogle Scholar
  89. Stadler M, Akne H, Dekermendjian K, Reiss R, Sterner O, Witt R (1995) Novel bioactive azaphilones from fruit bodies and mycelial cultures of the Ascomycete Bulgaria inquinans (FR.). Nat Prod Lett 7:7–14Google Scholar
  90. Stadler M, Baumgartner M, Grothe T, Muehlbauer A, Seip S, Wollweber H (2001a) Concentricol, a taxonomically significant triterpenoid from Daldinia concentrica. Phytochemistry 56:787–793PubMedCrossRefGoogle Scholar
  91. Stadler M, Wollweber H, Mühlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M, Wetzstein HG, Tichy HV (2001b) Molecular chemotaxonomy of Daldinia and other Xylariaceae. Mycol Res 105:1191–1205CrossRefGoogle Scholar
  92. Stadler M, Laessoe T, Vasilyeva L (2005) The genus Pyrenomyxa and its affinities to other cleistocarpous Hypoxyloideae as inferred from morphological and chemical traits. Mycologia 97:1129–1139PubMedCrossRefGoogle Scholar
  93. Stadler M, Quang DN, Tomita A, Hashimoto T, Asakawa Y (2006) Changes in secondary metabolism during stromatal ontogeny of Hypoxylon fragiforme. Mycol Res 110:811–820PubMedCrossRefGoogle Scholar
  94. Steglich W (1981) Biologically active compounds from higher fungi. Pure Appl Chem 53:1233–1240CrossRefGoogle Scholar
  95. Steglich W, Klaar M, Furtner W (1974) (+)-Mitorubrin derivatives from Hypoxylon fragiforme. Phytochemistry 13:2874–2875CrossRefGoogle Scholar
  96. Steglich W, Fugmann B, Lang-Fugmann S (2001) RÖMPP Encyclopedia natural products. Georg Thieme Verlag, New YorkGoogle Scholar
  97. Steyn PS, Vleggaar R (1986) A reinvestigation of the structure of monochaetin, a metabolite of Monochaetia compta. J Chem Soc 11:1975–1976Google Scholar
  98. Sturdikova M, Slugen D, Lesova K, Rosenberg M (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem Listy 94:105–110Google Scholar
  99. Suzuki S, Hosoe T, Nozawa K, Yaguchi T, Udagawa SI, Kawai KI (1999) Mitorubrin derivatives on ascomata of some Talaromyces species of ascomycetous fungi. J Nat Prod 62:1328–1329PubMedCrossRefGoogle Scholar
  100. Tabata Y, Ikegami S, Yaguchi T, Sasaki T, Hoshiko S, Sakuma S, Shin-Ya K, Seto H (1999) Diazaphilonic acid, a new azaphilone with telomerase inhibitory activity. J Antibiot 52:412–414PubMedGoogle Scholar
  101. Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625–628Google Scholar
  102. Thines E, Anke H, Sterner O (1998) Trichoflectin, a bioactive azaphilone from the ascomycete Trichopezizella nidulus. J Nat Prod 61:306–308PubMedCrossRefGoogle Scholar
  103. Toki S, Tanaka T, Uosaki Y, Yoshida M, Suzuki Y, Kita K, Mihara A, Ando K, Lokker NA, Giese NA, Matsuda Y (1999) RP-1551s, a family of azaphilones produced by Penicillium sp., inhibit the binding of PDGF to the extracellular domain of its receptor. J Antibiot 52:235–244PubMedGoogle Scholar
  104. Tomoda H, Matsushima C, Tabata N, Namatame I, Tanaka H, Bamberger MJ, Arai H, Fukazawa M, Inoue K, Omura S (1999) Structure-specific inhibition of cholesteryl ester transfer protein by azaphilones. J Antibiot 52:160–170PubMedGoogle Scholar
  105. Turner WB (1971) Fungal metabolites. Academic press, LondonGoogle Scholar
  106. Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic press, LondonGoogle Scholar
  107. Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments. Part 2—a review. Czech J Food Sci 26:73–98Google Scholar
  108. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148PubMedCrossRefGoogle Scholar
  109. Vleggaar R, Steyn PS, Nagel DW (1974) Constitution and absolute configuration of austdiol, the main toxic metabolite from Aspergillus ustus. J Chem Soc 1:45–49Google Scholar
  110. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274PubMedCrossRefGoogle Scholar
  111. Wei WG, Yao ZJ (2005) Synthesis studies toward chloroazaphilone and vinylogous γ-pyridones: two common natural product core structures. J Org Chem 70:4585–4590PubMedCrossRefGoogle Scholar
  112. Yamada T, Doi M, Shigeta H, Muroga Y, Hosoe S, Numata A, Tanaka R (2008) Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett 49:4192–4195CrossRefGoogle Scholar
  113. Yamada T, Muroga Y, Tanaka R (2009) New Azaphilones, Seco-Chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar. Drugs 7:249–257CrossRefGoogle Scholar
  114. Yang DJ, Tomoda H, Tabata N, Masuma R, Omura S (1996) New isochromophilones VII and VIII produced by Penicillium sp. FO-4164. J Antibiot 49:223–229PubMedGoogle Scholar
  115. Yang SW, Chan TM, Terracciano J, Patel R, Patel M, Gullo V, Chu M (2006) A new hydrogenated azaphilone Sch 725680 from Aspergillus sp. J Antibiot 59:720–723PubMedCrossRefGoogle Scholar
  116. Yang SW, Chan TM, Terracciano J, Loebenberg D, Patel M, Gullo V, Chu M (2009) Sch 1385568, a new azaphilone from Aspergillus sp. J Antibiot 62:401–403PubMedCrossRefGoogle Scholar
  117. Yasukawa K, Takahashi M, Natori S, Kawai KI, Yamazaki M, Takeuchi M, Takido M (1994) Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology 51:108–112PubMedCrossRefGoogle Scholar
  118. Yasukawa K, Itabashi T, Kawai KI, Takido M (2008) Inhibitory effects of falconensins on 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory ear edema in mice. J Nat Med 62:384–386PubMedCrossRefGoogle Scholar
  119. Ying J, Mao X, Ma Q, Zong Y, Wen H (1987) Icons of medicinal fungi from China. Science press, BeijingGoogle Scholar
  120. Yoshida E, Fujimoto H, Baba M, Yamazaki M (1995) Four new chlorinated azaphilones, helicusins A-D, closely related to 7-epi-sclerotiorin, from an ascomycetous fungus, Talaromyces helicus. Chem. Pharm Bull 43:1307–1310Google Scholar
  121. Yoshida E, Fujimoto H, Yamazaki M (1996a) Ex vivo study on MAO inhibitory activity of luteusin A, from an ascomycete Talaromyces luteus, and Ro16–6491, a reversible MAO-B inhibitor. J Nat Med 50:54–57Google Scholar
  122. Yoshida E, Fujimoto H, Yamazaki M (1996b) Revised stereostructures of luteusins C and D. Chem Pharm Bull 44:1775Google Scholar
  123. Yoshida E, Fujimoto H, Yamazaki M (1996c) Isolation of three new azaphilones, luteusins C, D, and E, from an ascomycete, Talaromyces luteus. Chem Pharm Bull 44:284–287PubMedGoogle Scholar
  124. Yu BZ, Zhang GH, Du ZZ, Zheng YT, Xu JC, Luo XD (2008) Phomoeuphorbins A-D, azaphilones from the fungus Phomopsis euphorbiae. Phytochemistry 69:2523–2526PubMedCrossRefGoogle Scholar
  125. Zhu J, Grigoriadis NP, Lee JP, JAJr Porco (2005) Synthesis of the azaphilones using copper-mediated enantioselective oxidative dearomatization. J Am Chem Soc 127:9342–9343PubMedCrossRefGoogle Scholar
  126. Zou XW, Sun BD, Chen XL, Liu XZ, Che YS (2009) Helotialins A—C, Anti-HIV metabolites from a Helotialean ascomycete. Chin J Nat Med 7:140–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Pharmacy, Department of Pharmaceutical Biology and MicrobiologyUniversity of HamburgHamburgGermany
  2. 2.Department of PharmacognosyAin Shams UniversityCairoEgypt
  3. 3.Institute of Organic ChemistryHamburgGermany

Personalised recommendations